
Online monitoring of CO2 using IoT for assessment of leakage risks associated with geological sequestration
Jianhua MA, Jinfeng LIU, Yongzhang ZHOU, Yijun ZHENG, Kefei LU, Xingyu LIN, Hanyu WANG, Can ZHANG
Online monitoring of CO2 using IoT for assessment of leakage risks associated with geological sequestration
Geological sequestration can be used to reduce CO2 emission without much effect on economic growth. It has become an indispensable technical approach to achieving dual-carbon goals. However, geological sequestration carries significant environmental risks from CO2 leakage at storage sites. To ensure the safety and efficacy of carbon sequestration it is critical that potential leaks can be identified through continuous monitoring. In this regard, the Internet of Things (IoT) is ideal due to its large-scale, continuous monitoring, and intelligent analysis capabilities, yet this technology has not been widely implemented. This paper outlines the basis for sensor selection and sensor node deployment, proposes the design idea for underlying sensor technology, and establishes an IoT CO2 monitoring system for storage sites. Specifically, infrared CO2 sensor is selected as the primary sensor and laser CO2 sensor as the secondary sensor, along with FT-IR patrol monitoring; a combination of real-time optimization of mobile deployment, random deployment, and fixed deployment is used in sensor node deployment; a mix of cluster topology and mesh topology is used in high-risk areas, and star topology and tree topology are used in edge areas connected to the main area. As technology advances, sensor mass production and sensor miniaturization will lead to more efficient and scalable sensor networks, and IoT monitoring technology will play a crucial role in continuous monitoring of carbon storage sites.
geological carbon dioxide sequestration / online monitoring / big data / Internet of Things / leakage risk assessment
[1] |
李三忠, 刘丽军, 索艳慧, 等. 碳构造: 一个地球系统科学新范式[J]. 科学通报, 2023, 68(4): 309-338.
|
[2] |
郭正堂. 双碳战略与地球科学[R]. 天津: 第四届表层地球系统科学国际研讨会, 2023.
|
[3] |
National Oceanic and Atmospheric Administration, Earth System Research Laboratories. Trends in atmospheric carbon dioxide (CO2) [EB/OL]. (2024-05-05)[2024-05-14]. https://gml.noaa.gov/ccgg/trends/.
|
[4] |
World Meteorological Organization. State of the global climate 2022[M]. Geneva: World Meteorological Organization, 2023.
|
[5] |
鲁政委, 钱立华, 阳能. 碳关税: 欧美的区别与应对思考[N/OL]. 金融时报, (2023-02-08)[2024-05-14]. https://www.financialnews.com.cn/pl/zj/202302/t20230208_264330.html.
|
[6] |
谢和平. 发展低碳技术推进绿色经济[J]. 中国能源, 2010, 32(9): 5-10.
|
[7] |
National Research Council. Climate change: evidence and causes: update 2020[M]. Washington DC: The National Academies Press, 2020.
|
[8] |
IPCC. Climate Change 2021:the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2021.
|
[9] |
赵改善. 二氧化碳地质封存地球物理监测: 现状、 挑战与未来发展[J]. 石油物探, 2023, 62(2): 194-211.
|
[10] |
International Energy Agency. World energy outlook 2010[R]. Paris: International Energy Agency, 2011.
|
[11] |
|
[12] |
张贤, 杨晓亮, 鲁玺. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京: 中国21世纪议程管理中心, 全球碳捕集与封存研究院, 清华大学, 2023.
|
[13] |
蔡博峰, 李琦, 张贤. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021): 中国 CCUS 路径研究[R]. 北京: 生态环境部环境规划院, 2021.
|
[14] |
|
[15] |
谢和平, 谢凌志, 王昱飞, 等. 全球二氧化碳减排不应是CCS, 应是CCU[J]. 四川大学学报(工程科学版), 2012, 44(4): 1-5.
|
[16] |
王晓桥, 马登龙, 夏锋社, 等. 封储二氧化碳泄漏监测技术的研究进展[J]. 安全与环境工程, 2020, 27(2): 23-34.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
杨慧, 范怀伟, 王文峰, 等. 空地一体化的地质碳封存泄露风险监测方法[J]. 工程地质学报, 2023, 31(4): 1461-1473.
|
[26] |
罗淑芹. 基于TDLAS的CO2气体检测分析系统[D]. 哈尔滨: 哈尔滨工业大学, 2013.
|
[27] |
|
[28] |
张琳, 邵晟宇, 杨柳, 等. 红外光谱法气体定量分析研究进展[J]. 分析仪器, 2009(2): 6-9.
|
[29] |
耿晔, 张文帅, 闫学军, 等. 济南市固定污染源CO2在线监测系统比对监测解析[J]. 环境科技, 2023, 36(4): 58-63.
|
[30] |
|
[31] |
施俊宇. 基于光声光谱检测技术的二氧化碳气体检测系统[D]. 杭州: 浙江工业大学, 2017.
|
[32] |
李军. 基于数值迭代的非色散红外二氧化碳高温补偿方法[J]. 仪表技术与传感器, 2017(4): 104-106.
|
[33] |
刘崎, 汪磊, 朱向冰, 等. 用于二氧化碳浓度红外检测的温度补偿研究[J]. 红外技术, 2023, 45(6): 671-677.
|
[34] |
|
[35] |
武永波. 基于物联网的滑坡灾害监测预警技术研究[D]. 武汉: 中国地质大学(武汉), 2021.
|
[36] |
|
[37] |
孙玉文. 基于无线传感器网络的农田环境监测系统研究与实现[D]. 南京: 南京农业大学, 2013.
|
[38] |
赵仕俊, 张朝晖. 无线传感器网络正六边形节点覆盖模型研究[J]. 计算机工程, 2010, 36(20): 113-115, 118.
|
[39] |
王志刚. 无线传感器网络节点部署与无人机辅助数据采集优化研究[D]. 西宁: 青海师范大学, 2023.
|
[40] |
瞿贻. 可移动节点辅助的无线传感器网络能量优化研究[D]. 北京: 清华大学, 2016.
|
[41] |
李润之. 基于移动平台的无线传感器网络拓扑结构探测研究[D]. 长沙: 国防科技大学, 2020.
|
[42] |
|
[43] |
王凤杰. 森林碳汇地面监测系统的研制及监测节点分布优化研究[D]. 泰安: 山东农业大学, 2014.
|
[44] |
高昌萱. 面向海洋牧场的传感监测网络部署研究[D]. 大连: 大连海事大学, 2019.
|
/
〈 |
|
〉 |