Mineral image recognition based on progressive deep learning across different granularity levels

Chengzhou WAN, Xiaohui JI, Mei YANG, Mingyue HE, Zhaochong ZHANG, Shan ZENG, Yuzhu WANG

PDF(2344 KB)
PDF(2344 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4) : 112-118. DOI: 10.13745/j.esf.sf.2024.5.1

Mineral image recognition based on progressive deep learning across different granularity levels

Author information +
History +

Abstract

In recent years mineral image recognition has become increasingly important for mineral identification with the use of deep learning. While such application has gained some success, further improvement is needed to enhance the identification accuracy on large-scale mineral datasets. The fine differences in morphology, texture, and color between different minerals may align with the characteristics of fine-grained recognition algorithms, yet results of fine-grained recognition for mineral identification have rarely been reported. This paper proposes a fine-grained mineral identification model based on Next-ViT, which allows precise classification of mineral images by progressive model training across different granularity levels. In this approach, Next-ViT, which combines the advantages of transformer and convolutional neural network, is utilized to extract rich image features; a random jigsaw generator is then employed to create mineral puzzles at different granularity levels encompassing various information from detailed to general. The model training involves progressive learning across multiple granularity levels. In the early stages, the model primarily focuses on fine-grained features, learning detailed information from the puzzles to differentiate between different minerals; as training progresses, model learning gradually shifts to higher granularity levels, capturing more abstract and global information. Through this approach, the model can effectively utilize information across multiple granularity levels, thereby improving the accuracy of mineral identification. Experimental results demonstrated the effectiveness of this approach, with the proposed model achieving an accuracy of 86.5% in mineral identification on a dataset on 36 common minerals.

Key words

mineral identification / deep learning / Next-ViT / fine-grained identification / progressive multi-granularity-level training

Cite this article

Download Citations
Chengzhou WAN , Xiaohui JI , Mei YANG , et al . Mineral image recognition based on progressive deep learning across different granularity levels. Earth Science Frontiers. 2024, 31(4): 112-118 https://doi.org/10.13745/j.esf.sf.2024.5.1

References

[1]
郝慧珍, 顾庆, 胡修棉. 基于机器学习的矿物智能识别方法研究进展与展望[J]. 地球科学, 2021, 46(9): 3091-3106.
[2]
LOU W, ZHANG D X, BAYLESS R C. Review of mineral recognition and its future[J]. Applied Geochemistry, 2020, 122: 104727.
[3]
徐述腾, 周永章. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报, 2018, 34(11): 3244-3252.
[4]
周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573.
[5]
周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018.
[6]
BAYKEN N A, YIMAZ N, KANSUN G, et al. Case study in effects of color spaces for mineral identification[J]. Scientific Research and Essays, 2010, 5(11): 1243-1253.
[7]
郭艳军, 周哲, 林贺洵, 等. 基于深度学习的智能矿物识别方法研究[J]. 地学前缘, 2020, 27(5): 39-47.
[8]
AGRAWAL N, GOVIL H. A deep residual convolutional neural network for mineral classification[J]. Advances in Space Research, 2023, 71(8): 3186-3202.
[9]
彭伟航, 白林, 商世为, 等. 基于改进InceptionV3模型的常见矿物智能识别[J]. 地质通报, 2019, 38(12): 2059-2066.
[10]
杨彪, 马亦骥, 倪瑞璞, 等. 基于多尺度密集连接网络的矿物图像智能识别[J]. 云南大学学报(自然科学版), 2022, 44(6): 1118-1126.
[11]
杨彪, 倪瑞璞, 高皓, 等. 基于多分辨率图像的矿物特征自动提取与矿物智能识别模型[J]. 有色金属工程, 2022, 12(5): 84-93.
[12]
ZENG X, XIAO Y C, JI X H, et al. Mineral identification based on deep learning that combines image and mohs hardness[J]. Minerals, 2021, 11(5): 506.
[13]
矿物数据库[EB/OL]. [2024-04-24]. https://www.mindat.org/.
[14]
WEI X S, SONG Y Z, MAC AODHA O, et al. Fine-grained image analysis with deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8927-8948.
[15]
马瑶, 智敏, 殷雁君, 等. CNN和Transformer在细粒度图像识别中的应用综述[J]. 计算机工程与应用, 2022, 58(19): 53-63.
[16]
李祥霞, 吉晓慧, 李彬. 细粒度图像分类的深度学习方法[J]. 计算机科学与探索, 2021, 15(10): 1830-1842.
[17]
LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]// Proceedings of the 2015 IEEE international conference on computer vision (ICCV), Santiago, Chile. New York: IEEE, 2015: 1449-1457.
[18]
ZHUANG P Q, WANG Y L, QIAO Y. Learning attentive pairwise interaction for fine-grained classification[C]// Proceedings of the AAAI conference on artificial intelligence, New York, USA. Washington: AAAI Press, 2020, 34(7): 13130-13137.
[19]
ZHENG H L, FU J L, ZHA Z J, et al. Learning deep bilinear transformation for fine-grained image representation[C]// Proceedings of the 33rd international conference on neural information processing systems (NeurIPS). Vancouver: Curran Associates Inc., 2019: 4277-4286.
[20]
DU R Y, CHANG D L, BHUNIA A K, et al. Fine-grained visual classification via progressive multi-granularity training of jigsaw patches[C]//VEDALDI A, BISCHOF H, BROX T, et al. Proceedings of European conference on computer vision. Cham: Springer, 2020: 153-168.
[21]
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. (2021-01-03)[2023-08-15]. https://arxiv.org/abs/2010.11929.
[22]
LI J S, XIA X, LI W, et al. Next-ViT: next generation vision transformer for efficient deployment in realistic industrial scenarios[EB/OL]. (2022-08-16)[2024-04-24]. http://arxiv.org/abs/2207.05501v4.
[23]
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of 2009 IEEE conference on computer vision and pattern recognition (CVPR), Miami, FL, USA. New York: IEEE, 2009: 248-255.

Comments

PDF(2344 KB)

Accesses

Citation

Detail

Sections
Recommended

/