Research on the 3D implicit potential field modeling method for urban underground space based on the open-source GemPy

Zhou LIAO, Mei LI

PDF(3853 KB)
PDF(3853 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3) : 482-497. DOI: 10.13745/j.esf.sf.2024.2.30

Research on the 3D implicit potential field modeling method for urban underground space based on the open-source GemPy

Author information +
History +

Abstract

Three-dimensional geological modeling is essential for urban subterranean space planning and management. In the era of geological big data, there is a shift towards implicit modeling techniques. While commercial software like GeoModeller and Surpac offer implicit modeling capabilities, they are proprietary and lack open-source accessibility. This paper focuses on the open-source GemPy modeling platform, utilizing three-dimensional implicit potential field modeling techniques and presenting an algorithmic solution for geological pinch-outs. The proposed approach is integrated into GemPy’s foundational modeling architecture. Through a case study of a specific urban area, the paper demonstrates the workflow for fine-scale three-dimensional geological modeling. A modeling dataset is created using borehole data and the potential field method, along with pan-Kriging interpolation, to establish a three-dimensional geological model of the urban area. Specialized techniques are employed to address urban pinch-outs. To visualize geological interfaces in the model, 18 engineering geological layers are individually displayed. The model’s accuracy is assessed using stratified K-fold cross-validation, including metrics like the Pearson correlation coefficient (CC). Experimental results show that the three-dimensional implicit potential field geological modeling method in GemPy is suitable for urban geological structures, providing a reliable foundation for decision-making in urban subterranean development.

Key words

three-dimensional geological modeling / implicit potential field method / GemPy / stratigraphic pinch-outs / urban subterranean space

Cite this article

Download Citations
Zhou LIAO , Mei LI. Research on the 3D implicit potential field modeling method for urban underground space based on the open-source GemPy. Earth Science Frontiers. 2024, 31(3): 482-497 https://doi.org/10.13745/j.esf.sf.2024.2.30

References

[1]
ELMQVIST T, ANDERSSON E, MCPHEARSON T, et al. Urbanization in and for the Anthropocene[J]. Urban Sustainability, 2021, 1(1): 6.
[2]
郝卉. 城市地下空间发展现状与前景[J]. 砖瓦, 2021(11): 85-86.
[3]
XIE H, ZHANG Y, CHEN Y, et al. A case study of development and utilization of urban underground space in Shenzhen and the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Tunnelling and Underground Space Technology, 2021, 107: 103651.
[4]
OSWALD C, RINNER C, ROBINSON A. Applications of 3D printing in physical geography education and urban visualization[J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 2019, 54(4): 278-287.
[5]
OLIEROOK H K H, SCALZO R, KOHN D, et al. Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models[J]. Geoscience Frontiers, 2021, 12(1): 479-493.
[6]
田玉培, 王俊, 刘文文. 城市地下空间三维地质建模的研究及实现[J]. 现代矿业, 2021, 37(8): 49-52, 55.
[7]
JING H, HANHAN H, GUISEN Z, et al. 3D geological modelling of superficial deposits in Beijing City[J]. Geology in China, 2019, 46(2): 244-254.
[8]
BIRCH C. New systems for geological modelling-black box or best practice?[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2014, 114(12): 993-1000.
[9]
COWAN E J, BEATSON R K, FRIGHT W R, et al. Rapid geological modelling[C]//Applied structural geology for mineral exploration and mining, international symposium, Kalgoorlie, Australia: Kalgoorlie. 2002, 9: 23-25.
[10]
COWAN E J, BEATSON R K, ROSS H J, et al. Practical implicit geological modelling[C]//Proceedings of the 5th international mining geology conference. Bendigoe: Australasian Institute of Mining and Metallurgy Melbourne, 2003, 8: 89-99.
[11]
VOLLGGER S A, CRUDEN A R, AILLERES L, et al. Regional dome evolution and its control on ore-grade distribution: insights from 3D implicit modelling of the Navachab gold deposit, Namibia[J]. Ore Geology Reviews, 2015, 69: 268-284.
[12]
VON HARTEN J, DE LA VARGA M, HILLIER M, et al. Informed local smoothing in 3D implicit geological modeling[J]. Minerals, 2021, 11(11): 1281.
[13]
王权, 邹艳红. 基于轮廓线层间形态插值的三维地质隐式曲面重构[J]. 地质科技通报, 2023, 42(5): 293-300.
[14]
王权. 三维地质隐式建模形态不确定性分析与定量评价研究[D]. 长沙: 中南大学, 2022.
[15]
ZHONG D, WANG L, LIN B I, et al. Implicit modeling of complex orebody with constraints of geological rules[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2392-2399.
[16]
FRANK T, TERTOIS A L, MALLET J L. 3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data[J]. Computers & Geosciences, 2007, 33(7): 932-943.
[17]
CUOMO S, GALLETTI A, GIUNTA G, et al. Reconstruction of implicit curves and surfaces via RBF interpolation[J]. Applied Numerical Mathematics, 2017, 116: 157-171.
[18]
SKALA V. RBF interpolation with CSRBF of large data sets[J]. Procedia Computer Science, 2017, 108: 2433-2437.
[19]
MACÊDO I, GOIS J P, VELHO L. Hermite radial basis function simplicits[C]//Proceedings of computer graphics forum. Oxford: Blackwell Publishing Ltd, 2011, 30(1): 27-42.
[20]
GUO J, WU L, ZHOU W, et al. Section-constrained local geological interface dynamic updating method based on the HRBF surface[J]. Journal of Structural Geology, 2018, 107: 64-72.
[21]
FLEISHMAN S, COHEN-OR D, SILVA C T. Robust moving least-squares fitting with sharp features[J]. ACM Transactions on Graphics (TOG), 2005, 24(3): 544-552.
[22]
CARR J C, BEATSON R K, CHERRIE J B, et al. Reconstruction and representation of 3D objects with radial basis functions[C]//Proceedings of the 28th annual conference on computer graphics and interactive techniques (SIGGRAPH’01). New York: Association for Computing Machinery, 2001: 67-76.
[23]
STOCH B, ANTHONISSEN C J, MCCALL M J, et al. 3D implicit modeling of the Sishen Mine: new resolution of the geometry and origin of Fe mineralization[J]. Mineralium Deposita, 2018, 53(6): 835-853.
[24]
JONES M W, CHEN M. A new approach to the construction of surfaces from contour data[C]//Proceedings of computer graphics forum. Edinburgh: Blackwell Science Ltd, 1994, 13(3): 75-84.
[25]
曹勇, 苏晓慧, 孙梦梦, 等. 开源建模软件在水利工程BIM领域中的应用[J]. 水利规划与设计, 2021(8): 96-101, 126.
[26]
张志武. 三维矢量数据矿山模型算法研究及在Blender中的应用[D]. 武汉: 武汉科技大学, 2016.
[27]
赵勇, 许国, 卢鹏, 等. 基于GemPy的隐式三维地质建模方法[J]. 人民长江, 2023, 54(10): 98-104.
[28]
WU J, SUN B. Discontinuous mechanical analysis of manifold element strain of rock slope based on open source Gempy[C]//E3S Web of conferences. Hangzhou: EDP Sciences, 2021, 248: 03084.
[29]
BEN-SHABAT Y, GOULD S. DeepFit: 3D surface fitting via neural network weighted least squares[C]//Computer Vision-ECCV 2020: 16th European conference. Glasgow: Springer International Publishing, 2020: 20-34.
[30]
SCHAAF A, VARGA M, WELLMANN F, et al. Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1[J]. Geoscientific Model Development, 2021, 14(6): 3899-3913.
[31]
DE LA VARGA M, SCHAAF A, WELLMANN F. GemPy 1.0: open-source stochastic geological modeling and inversion[J]. Geoscience Model Development, 2019, 12 (32): 1-32.
[32]
CHEN G, ZHU J, QIANG M, et al. Three-dimensional site characterization with borehole data: a case study of Suzhou area[J]. Engineering Geology, 2018, 234: 65-82.
[33]
FISCHER M, PROPPE C. Enhanced universal kriging for transformed input parameter spaces[J]. Probabilistic Engineering Mechanics, 2023, 74: 103486.
[34]
熊前进, 柴小婷, 万翔, 等. 对数泛克立格法在东天山土屋—延东地区Cu、Au异常信息提取中的应用[J]. 资源环境与工程, 2021, 35(4): 536-540.
[35]
LORENSEN W E, CLINE H E. Marching cubes: a high resolution 3D surface construction algorithm[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 163-169.
[36]
SANTOLARIA P, VENDEVILLE B C, GRAVELEAU F, et al. Double evaporitic décollements: influence of pinch-out overlapping in experimental thrust wedges[J]. Journal of Structural Geology, 2015, 76: 35-51.
[37]
苏栋, 黄茂隆, 韩文龙, 等. 考虑城市地质环境影响的深圳市地下空间开发适宜性评价[J]. 地学前缘, 2023, 30(4): 514-524.
[38]
蒋旭, 王婷婷, 穆静. 地下空间开发利用适宜性与资源量的应用研究[J]. 地下空间与工程学报, 2018, 14(5): 1145-1153.
[39]
RATA M, DOUAOUI A, LARID M, et al. Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria[J]. Theoretical and Applied Climatology, 2020, 141: 1009-1024.
[40]
GUO J, WANG X, WANG J, et al. Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm[J]. Engineering Geology, 2021, 284: 106047.
[41]
BORGHI A, RENARD P, FOURNIER L, et al. Stochastic fracture generation accounting for the stratification orientation in a folded environment based on an implicit geological model[J]. Engineering Geology, 2015, 187: 135-142.

Comments

PDF(3853 KB)

Accesses

Citation

Detail

Sections
Recommended

/