Geochemical distribution and metallogenic potential of Pb-Zn in Pakistan and its implications for mineral prospecting in sediment-hosted Pb-Zn deposits in the Tethys belt

Huishan ZHANG, Yucai SONG, Wenchang LI, Zhongping MA, Jing ZHANG, Jun HONG, Lei LIU, Pengrui LÜ, Zhihua WANG, Haidi ZHANG, Bo YANG, HAIDER Naghmah, Shaheen KHALIL Yasir, Ali NAREJO Asad

PDF(17572 KB)
PDF(17572 KB)
Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1) : 105-126. DOI: 10.13745/j.esf.sf.2024.10.44

Geochemical distribution and metallogenic potential of Pb-Zn in Pakistan and its implications for mineral prospecting in sediment-hosted Pb-Zn deposits in the Tethys belt

Author information +
History +

Abstract

Pakistan, which is located between the Tibetan and Iranian Plateaus, is an important part of the Tethys Domain, where some lead-zinc deposits and ore occurrences have been revealed. The metallogenic pattern and the extend of lead-zinc mineralization zones, however, are unclear due to lack of systematic geological investigation, and the metallogenic potential of lead and zinc in Pakinstan remains undetermined. The low-density geochemical survey is an effective method to address the above issues. Based on the results of the 1∶1000000 low-density geochemical survey in Pakistan, this paper describes the geochemical background and geochemical anomaly distribution characteristics of lead and zinc in Pakistan. Combined with the regional geology and metallogeny, types, and key ore-controlling factors of lead-zinc deposits, favorable prospective areas are delineated and potential ore deposit types are proposed, providing the foundation for lead and zinc prospecting and exploration. The results show that the content of lead in stream sediments in the bedrock outcrop area of Pakistan ranged between 0.37-155.90 μg/g, with an average value of 13.44 μg/g, which is higher than the Clark value of the crust. The content of zinc varied from 1.78 to 288.70 μg/g, with an average value of 52.10 μg/g, which is lower than the Clark value of the crust. According to 92% cumulative frequency as the lower limit of anomaly (Pb = 18.4 μg/g, Zn = 76.0 μg/g), a total of 18 lead geochemical anomalies, 24 zinc geochemical anomalies, nine lead-zinc prospective areas were delineated, and three main metallogenic series were identified. It is suggested that the Khuzdar-Rasbela and Quetta areas of south-central Pakistan have great prospecting potential for SEDEX and MVT lead-zinc deposits. This region—connecting with the Sanandagi-Sirjan lead-zinc metallogenic belt of Iran to the west, extending to the Tianshuihai-Sanjiang lead-zinc metallogenic belt of China to the east—is an important component of the giant metallogenic belt of the Tethys hosting sedimentary lead-zinc deposits, and this type of lead-zinc deposits may also be found in other metallogenic belts and areas of the Tethys belt.

Key words

Tethy / metallogenic potential / geochemical survey / sedimentary lead-zinc deposits / SEDEX and MVT / Pakistan

Cite this article

Download Citations
Huishan ZHANG , Yucai SONG , Wenchang LI , et al . Geochemical distribution and metallogenic potential of Pb-Zn in Pakistan and its implications for mineral prospecting in sediment-hosted Pb-Zn deposits in the Tethys belt. Earth Science Frontiers. 2025, 32(1): 105-126 https://doi.org/10.13745/j.esf.sf.2024.10.44

References

[1]
戴自希, 盛继福, 白冶, 等. 世界铅锌资源的分布与潜力[M]. 北京: 地震出版社, 2005.
[2]
LEACH D L, SANGSTER D, KELLEY K D, et al. Sediment-hosted lead-zinc deposits: a global perspective[J]. Economic Geology, 100th Anniversary, 2005: 561-607.
[3]
MUDD G M, JOWITT S M, WERNER T T. The world’s lead-zinc mineral resources: scarcity, data, issues andopportunities[J]. Ore Geology Reviews, 2017, 80: 1160-1190.
[4]
张长青, 芮宗瑶, 陈毓川, 等. 中国铅锌矿资源潜力和主要战略接续区[J]. 中国地质, 2013, 40(1): 248-272.
[5]
MONECKE T, PETERSEN S, HANNINGTON M D, et al. The minor element endowment of modern sea-floor massive sulfides and comparison with deposits hosted in ancient volcanic successions[M]// VERPLANCK P L, HITZMAN M W. Rare earth and critical elements in ore deposits. Knoxville: Society of Economic Geologists, 2016: 245-306.
[6]
王安建, 王高尚, 李建武, 等. 全球矿产资源形势报告(2022年)[R]. 北京: 自然资源部中国地质调查局, 2022.
[7]
刘英超, 侯增谦, 岳龙龙, 等. 中国沉积岩容矿铅锌矿床中的关键金属[J]. 科学通报, 2022, 67(增刊1): 406-424.
[8]
温汉捷, 朱传威, 杜胜江, 等. 中国镓锗铊镉资源[J]. 科学通报, 2020, 65(33): 3688-3699.
[9]
叶霖, 韦晨, 胡宇思, 等. 锗的地球化学及资源储备展望[J]. 矿床地质, 2019, 38(4): 711-728.
[10]
MELCHER F, BUCHHOLZ O. Germanium[M]// GUNN G. Critical metals handbook. West Sussex: John Wiley and Sons, Ltd., 2014: 177-203.
[11]
FOLEY N K, JASKULA B W, KIMBALL B E, et al. Gallium[M]// SCHULZ K J, DE YOUNG J H Jr, SEAL II R R, et al. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Washington: US Geological Survey Professional Paper, 2017, 1802: H1-H35.
[12]
MARSH E E, HITZMAN M W, LEACH D L. Critical elements in sediment-hosted deposits (clastic-dominated Zn-Pb-Ag, Mississippi valley-type Zn-Pb, sedimentaryrock-hosted stratiform Cu, and carbonate-hosted polymetallic deposits): a review[M]// VERPLANCK P L, HITZMAN M W. Rare earth and critical elements in ore deposits: reviews in economic geology. Littleton: Society of Economic Geologists, 2016, 18: 307-321.
[13]
GOODFELLOW W, LYDON J. Sedimentary exhalative (SEDEX)deposits[M]// GOODFELLOW W D. Mineral deposits of Canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods. Toronto: Geological Association of Canada, Mineral Deposits Division, 2007, 5: 163-183.
[14]
HOU Z Q, ZHANG H R. Geodynamics and metallogeny of the eastern Tethyan metallogenicdomain[J]. Ore Geology Reviews, 2015, 70: 346-384.
[15]
SONG Y C, LIU Y C, HOU Z Q, et al. Sediment-hosted Pb-Zn deposits in the Tethyan domain from China to Iran: characteristics, tectonic setting, and orecontrols[J]. Gondwana Research, 2019, 75: 249-281.
[16]
张辉善. 新特提斯构造域中东段沉积岩容矿铅锌成矿作用: 以青海多才玛和巴基斯坦杜达矿床为例[D]. 合肥: 中国科学技术大学, 2021.
[17]
YIGIT O. Mineral deposits of Turkey in relation to Tethyan metallogeny: implications for future mineralexploration[J]. Economic Geology, 2009, 104(1): 19-51.
[18]
ZHANG H S, SONG Y C, SUN J N, et al. A new discovery of mineralization as subseafloor hydrothermal replacement in the Duddar super-large SEDEX lead-zinc deposit in Pakistan[J]. Journal of Earth Science, 2024, 35(3): 1075-1078.
[19]
AHSAN S, QURESHI I. Mineral/rock resources of Lasbela and Khuzdar districts[J]. Geology Bulletin University Peshawar, 1997, 30: 41-51.
[20]
AHSAN S N, MALLICK K A. Geology and genesis of barite deposits of Lasbela and Khuzdar districts, Balochistan, Pakistan[J]. Resource Geology, 1999, 49(2): 105-111.
[21]
KAZMI A H, ABBAS G S. Metallogeny and mineral deposits ofPakistan[M]. Orient Petroleum Inc. Publishers, 2001: 1-264.
[22]
姚文光, 洪俊, 吕鹏瑞, 等. 苏莱曼山—喀喇昆仑山区域地质背景和成矿特征[M]. 北京: 地质出版社, 2019.
[23]
KAZMI A H, RANA R A. Tectonic map of Pakistan[Z]. Quetta: Geological Survey of Pakistan, 1982.
[24]
WANG X Q, ZHANG B M, NIE L S, et al. Mapping chemical earth program: progress and challenge[J]. Journal of Geochemical Exploration, 2020, 217: 106578.
[25]
王学求, 刘汉粮, 王玮, 等. 中国锂矿地球化学背景与空间分布: 远景区预测[J]. 地球学报, 2020, 41(6): 797-806.
[26]
王学求, 谢学锦, 张本仁, 等. 地壳全元素探测: 构建“化学地球”[J]. 地质学报, 2010, 84(6): 854-864.
[27]
张洪瑞, 侯增谦, 杨志明. 特提斯成矿域主要金属矿床类型与成矿过程[J]. 矿床地质, 2010, 29(1): 113-133.
[28]
吕鹏瑞, 姚文光, 张海迪, 等. 巴基斯坦成矿地质背景、主要金属矿产类型及其特征[J]. 地质科技情报, 2016, 35(4): 150-157.
[29]
洪俊, 张辉善, 吕鹏瑞, 等. 巴基斯坦新特提斯构造-岩浆演化与重要金属成矿作用[J]. 西北地质, 2024, 57(3): 154-176.
[30]
METCALFE I. Gondwanaland dispersion, Asian accretion and evolution of Eastern Tethys[J]. Australian Journal of Earth Sciences, 1996, 43(6): 605-623.
[31]
BORTOLOTTI V, PRINCIPI G. Tethyan ophiolites and Pangea break-up[J]. Island Arc, 2005, 14(4): 442-470.
[32]
REHMAN H U, SENO T, YAMAMOTO H, et al. Timing of collision of the Kohistan-Ladakh Arc with India and Asia: debate[J]. Island Arc, 2011, 20 (3): 308-328.
[33]
SENGOR A M C, NATALIN B A. Palaeotectonics of Asia: fragments of a synthesis[M]// YIN A, HARRISON M. The tectonic evolution of Asia. Cambridge: Cambridge University Press, 1996: 443-486.
[34]
SORKHABI R, HEYDARI E. Asia out of Tethys: foreword[J]. Tectonophysics, 2008, 451(1/2/3/4): 1-6.
[35]
张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3): 33-42.
[36]
王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480.
[37]
向运川. 区域地球化学数据管理信息系统的实现技术[J]. 物探与化探, 2002, 26(3): 209-214, 217.
[38]
谢学锦, 刘大文, 向运川, 等. 地球化学块体: 概念和方法学的发展[J]. 中国地质, 2002, 29(3): 225-233.
[39]
叶天竺. 矿产预测方法指南[M]. 北京: 地质出版社, 2003.
[40]
张晶, 李宝强, 李慧英. 区域地球化学方法在西天山地区成矿潜力评价中的应用[J]. 西北地质, 2017, 50(3): 162-172.
[41]
张晶, 孟广路, 王斌, 等. 西北地区区域地球化学特征与成果应用[M]. 武汉: 中国地质大学出版社, 2020.
[42]
RUDNICK R L, GAO S. The Composition of the continental crus[M]// HOLLAND H D, CONDIE K. The crust, vol. 3, treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64.
[43]
GOODFELLOW W D, LYDON J W, TURNER R J. Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphidedeposits[J]. Geological Association of Canada, Special Paper, 1993, 40: 201-252.
[44]
LEACH D L, BRADLEY D C, HUSTON D, et al. Sediment-hosted lead-zinc deposits in earth history[J]. Economic Geology, 2010, 105(3): 593-625.
[45]
MEINERT L D, DIPPLE G, NICOLESCU S. World skarn deposits[J]. Economic Geology, 2005, 98: 299-336.
[46]
SILLITOE R H. Ore-related breccias in volcanoplutonic arcs[J]. Economic Geology, 1985, 80(6): 1467-1514.
[47]
CANET C, CAMPRUBÍ A, GONZÁLEZ-PARTIDA E, et al. Mineral assemblages of the francisco I. Madero Zn-Cu-Pb-(Ag) deposit, Zacatecas, Mexico: implications for ore depositgenesis[J]. Ore Geology Reviews, 2009, 35(3/4): 423-435.
[48]
HEDENQUIST J W. Volcanic-related hydrothennal systenrs in the Circum-Pacifie Basin and their potential for mineralization[J]. Mining Geology, 1987, 37(3): 347-364.
[49]
FRANKLIN J M, GIBSON H L, JONASSON I R, et al. Volcanogenic massive sulfidedeposits[M]// Sudbury: Society of Economic Geologists, 2005: 523-560.
[50]
LARGE R R, MCPHIE J, GEMMELL J B, et al. The spectrum of ore deposit types, volcanic environments, alteration halos, and related exploration vectors in submarine volcanic successions: some examples from Australia[J]. Economic Geology, 2001, 96(5): 913-938.
[51]
HANNINGTON M D. Volcanogenic massive sulfidedeposits[M]// FRANKLIN J, GIBSON H L, JONASSON I, et al. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 463-488.
[52]
ARLEGUI L E. Paleostress reconstruction from striated fault data sets in the Kirthar fold belt, Southern Pakistan[J]. International Geology Review, 2001, 43(6): 539-547.
[53]
吴良士. 巴基斯坦伊斯兰共和国矿产资源及其地质特征[J]. 矿床地质, 2010, 29(2): 379-381.
[54]
WU Y H, YU P P, CHEN X, et al. Earlier stage, higher temperature, and deeper space facilitate indium precipitation in a skarn system, as exemplified by the Baoshan Pb-Zn polymetallic deposit, South China[J]. Ore Geology Reviews, 2023, 163: 105745.
[55]
张文宽, 杨本锦, 钟晓朗. 呷村超大型银多金属矿床的地球化学特征及找矿远景[J]. 地质地球化学, 1994, 22(1): 62-66.
[56]
高建华, 范文玉, 张林奎. 地球化学快速评价方法在找矿靶区圈定中的应用[J]. 沉积与特提斯地质, 2007, 27(4): 7-10.
[57]
NASEEM S, SHEIKH S A, QADEERUDDIN M, et al. Geochemical stream sediment survey in Winder Valley, Balochistan, Pakistan[J]. Journal of Geochemical Exploration, 2002, 76(1): 1-12.
[58]
毛景文, 张作衡, 王义天, 等. 国外主要矿床类型、特点及找矿勘查[M]. 北京: 地质出版社, 2012.
[59]
YANG W Z, XIE Y, FU S H, et al. The Tianshuihai lead-zinc deposit, Xinjiang, NW China: a successful case of multi-scale geochemical mapping[J]. Journal of Geochemical Exploration, 2014, 139: 136-143.
[60]
谢渝, 陶玲, 李惠, 等. 西昆仑甜水海地区地球化学普查及其找矿效果[J]. 物探与化探, 2017, 41(3): 410-420.
[61]
张晶, 周军, 樊会民, 等. 西北地区典型矿床地质地球化学特征图集[M]. 武汉: 中国地质大学出版社, 2018.
[62]
田江涛, 杨屹, 张小军, 等. 化探对东天山阿齐山铅锌矿发现的作用及意义[J]. 新疆地质, 2018, 36(4): 435-440.
[63]
郭海明. 西藏那曲安多县多才玛Pb-Zn矿床地质特征及矿化富集规律[D]. 长春: 吉林大学, 2018.
[64]
贺海龙. 江西冷水坑矿集区黄金坑重点检查区找矿潜力分析[J]. 世界有色金属, 2019(24): 63-64.
[65]
张雪琴, 徐登峰, 赵云, 等. 新疆东天山照壁山金铅锌多金属矿床地质特征及矿床成因[J]. 矿床地质, 2023, 42(6): 1121-1138.
[66]
杨宗耀, 唐菊兴, 任东兴, 等. 西藏斯弄多银多金属矿床地球物理和地球化学勘查进展[J]. 地球科学, 2024, 49(3): 1081-1103.
[67]
刘英超, 侯增谦, 岳龙龙, 等. 中国沉积岩容矿铅锌矿床中的关键金属[J]. 科学通报, 2022, 67: 406-424.
[68]
CHEN C, MENG L, XU J, et al. Texture and geochemistry of sphalerite from the Chitudian Pb-Zn-Ag deposit, southern margin of the North China Craton: implications for the enrichments of Cd, Ga, and In[J]. Ore Geology Reviews, 2023, 156: 105392.

Comments

PDF(17572 KB)

Accesses

Citation

Detail

Sections
Recommended

/