Geochemical characteristics and metallogenic prediction of gold in Papua New Guinea

Ming XU, Wanwan XI, Yuhao ZHAO, KUMUL Conrad, Datian WU, MOSUSU Nathan, Tiangang WANG, Yiping ZHU, Zhongyou YAO

PDF(4865 KB)
PDF(4865 KB)
Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1) : 194-204. DOI: 10.13745/j.esf.sf.2024.10.36

Geochemical characteristics and metallogenic prediction of gold in Papua New Guinea

Author information +
History +

Abstract

Papua New Guinea (PNG), which is located at the convergence edge between the Pacific plate and the Indo-Australian plate, consists of three tectonic units. There are two main types of gold mineralization in PNG: epithermal and porphyry. National-scale geochemical mapping was conducted in PNG between 2015-2018, using 1399 stream sediment samples collected from the Highland Region, Papua Peninsula, and New Guinea Islands. In this preliminary study we analyzed the geochemical background, spatial distribution characteristics and metallogenic potential of gold in PNG. The gold concentration ranged between 0.2-6188.0 ng/g, with a median value of 1.5 ng/g, which is higher than the gold upper crustal aboundance, and slightly lower than the gold geochemical baselines of China and Australia. The Central Arc-Land Collision Zone—consisting of the Papuan Fold Belt, the New Guinea Thrust Belt, Finisterre Terrane, the Aure Fold Belt, the Eastern Fold Belt, the Eastern Papuan Composite Terrane, and the Finisterre Terrane, with widespread development of medium-acidic intrusive rocks, alkaline intrusive rocks, and alkaline volcanic rocks—has a higher median value of gold than the Melanesian Arc. The calc-alkaline intrusive complex of the New Guinea thrust belt, and the calc-alkaline intrusive complex and the potassium-rich volcano-intrusive complex of the Melanesian magmatic arc strongly correlate with higher gold concentration. Altogether seven gold geochemical provinces and nine gold anomalies with epithermal or porphyry mineralization potential are delineated.

Key words

national-scale geochemical mapping / gold / anomaly / epithermal / porphyry / Papua New Guinea

Cite this article

Download Citations
Ming XU , Wanwan XI , Yuhao ZHAO , et al . Geochemical characteristics and metallogenic prediction of gold in Papua New Guinea. Earth Science Frontiers. 2025, 32(1): 194-204 https://doi.org/10.13745/j.esf.sf.2024.10.36

References

[1]
王登红. 战略性关键矿产相关问题探讨[J]. 化工矿产地质, 2019, 41(2): 65-72.
[2]
王登红, 代鸿章, 刘善宝, 等. 中国战略性关键矿产勘查开发进展与新一轮找矿的建议[J]. 科技导报, 2024, 42(5): 7-25.
[3]
KRISTIN N S. Gold, mineral commodity summaries[R]. Washington, DC: US Geological Survey, 2024.
[4]
崔敏利, 陈秀法, 何学洲. 世界111个金矿典型矿床地质特征一览[J]. 中国地质, 2020, 47(5): 1602-1621.
[5]
ZHAO Y H, KUMUL C, WANG T G, et al. National-scale geochemical baseline and anomalies of chromium in Papua New Guinea[J]. Minerals, 2023, 13(2): 205.
[6]
姚仲友, 赵宇浩, 王天刚, 等. 巴布亚新几内亚地质、矿产及投资环境[M]. 北京: 地质出版社, 2018.
[7]
WILLIAMSON A, HANCOCK G. The geology and mineral potential of Papua New Guinea[M]. Port Moresby: Papua New Guinea Department of Mining, 2005.
[8]
SHEPPARD S, CRANFIELD L. Geological framework and mineralization of Papua New Guinea: an update[M]. Port Moresby: Mineral Resources Authority, 2012.
[9]
HOLM R J, SPANDLER C, RICHARDS S W. Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea[J]. Gondwana Research, 2015, 28(3): 1117-1136.
[10]
姚仲友, 赵宇浩, 王天刚, 等. 大洋洲地区地质矿产编图新进展[J]. 地质通报, 2018, 37(增刊1): 510-521.
[11]
ROGERSON R, HILYARD D B, FRANCIS G, et al. The foreland thrust belt of Papua New Guinea[J]. Proceeding of Pacific Rim International Conference, 1987, 87: 579-583.
[12]
WANG T G, KUMUL C, ZHAO Y H, et al. National-scale distribution of Cobalt in Papua New Guinea and its significance for mineralization potential[J]. Journal of Geochemical Exploration, 2022, 239: 107013.
[13]
DOW D B. A geological synthesis of Papua New Guinea[M]. Port Moresby: Bureau of Mineral Resources, Geology and Geophysics, 1977: 41.
[14]
PIGRAM C J, DAVIES P J, FEARY D A, et al. Tectonic controls on carbonate platform evolution in southern Papua New Guinea: passive margin to foreland basin[J]. Geology, 1989, 17(3): 199.
[15]
DOBEIER C J, POKE B. 1∶100000 geological map publication series of Papua New Guinea, sheet 7887 Aiome[CM]. Port Moresby: Mineral Resources Authority, 2012.
[16]
DOBEIER C J, POKE B, WAGNER B. 1∶100000 geological map publication series of Papua New Guinea, sheet 7886 Minj[CM]. Port Moresbya: Mineral Resources Authority, 2012.
[17]
PIGRAM C J, DAVIES H L. Terranes and accretion history of the New Guinea orogeny[J]. BMR Journal of Australian Geology and Geophysics, 1987, 10: 193-211.
[18]
WILLIAMSON A, ROGERSON R. Geology and mineralisation of Misima Island[M]. Port Moresby: Geological Survey of Papua New Guinea, 1983.
[19]
JAQUES A L. Petrology and petrogenesis of cumulate peridotites and gabbros from the Marum ophiolite complex, northern Papua New Guinea[J]. Journal of Petrology, 1981, 22(1): 1-40.
[20]
李文光, 傅朝义, 姚仲友, 等. 巴布亚新几内亚铜金矿床大地构造背景、成因类型与成矿特征[J]. 地质通报, 2014, 33(增刊1): 270-282.
[21]
宋学信, 信迪, 王天刚, 等. 巴布亚新几内亚铜金矿床成矿时代及成矿控制因素[J]. 地质通报, 2014, 33(增刊1): 283-298.
[22]
Standard & Pool Capital IQ[DB/OL].(2024-06-14)[2024-08-14]. https://www.capitaliq.spglobal.com/web/client#office/screener?perspective=243327.
[23]
李文光, 王天刚, 姚仲友, 等. 与碱性岩有关的浅成低温热液型金矿特征与控矿因素: 以巴布亚新几内亚波尔盖拉金矿为例[J]. 地质通报, 2014, 33(增刊1): 308-317.
[24]
信迪, 刘京, 李雷, 等. 巴布亚新几内亚奥克泰迪铜金矿床成矿特征和控制因素[J]. 地质通报, 2014, 33(增刊1): 299-307.
[25]
王学求, 张必敏, 张勤, 等. 国际地球化学填图技术要求[S]. 北京: 中国地质调查局, 2018.
[26]
张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3): 33-42.
[27]
GRUNSKY E C, DREW L J, SUTPHIN D M. Process recognition in multi-element soil and stream-sediment geochemical data[J]. Applied Geochemistry, 2009, 24(8): 1602-1616.
[28]
WANG T G, KUMUL C, ZHAO Y H, et al. Assessment of indium prospecting potential in national-scale geochemical perspective, Papua New Guinea[J]. Journal of Geochemical Exploration, 2023, 247: 107156.
[29]
WANG T G, KUMUL C, ZHAO Y H, et al. National-scale geochemical baseline of 69 elements in Papua New Guinea stream sediments[J]. Journal of Geochemical Exploration, 2024, 256: 107355.
[30]
REIMANN C, ARNOLDUSSEN A, ENGLMAIER P, et al. Element concentrations and variations along a 120-km transect in southern Norway-Anthropogenic vs. geogenic vs. biogenic element sources and cycles[J]. Applied Geochemistry, 2007, 22(4): 851-871.
[31]
RUDNICK R L, GAO S. Composition of the continental crust[M]// HOLLAND H D, TUREKIAN K K, HOLLAND H D. Treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64.
[32]
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.
[33]
CARITAT P, COOPER M. National geochemical survey of Australia: the geochemical atlas of Australia: dataset[DB/OL].(2011-07-06)[2024-10-06]. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/82869.
[34]
刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.
[35]
DAVIES H L. The geology of New Guinea: the cordilleran margin of the Australian continent[J]. Episodes, 2012, 35(1): 87-102.
[36]
王天刚, 姚仲友, 黄宾, 等. 巴布亚新几内亚构造演化与找矿潜力[J]. 资源调查与环境, 2014, 35(2): 130-135.
[37]
DEMETRIADES A, BIRKE M, ALBANESE S, et al. Continental, regional and local scale geochemical mapping[J]. Journal of Geochemical Exploration, 2015, 154: 1-5.
[38]
DEMETRIADES A, SMITH D, WANG X Q. General concepts of geochemical mapping at global, regional, and local scales for mineral exploration and environmental purposes[J]. Geochimica Brasiliensis, 2018, 32(2): 136-179.
[39]
王学求. 全球地球化学基准: 了解过去, 预测未来[J]. 地学前缘, 2012, 19(3): 7-18.
[40]
WANG X Q. China geochemical baselines: sampling methodology[J]. Journal of Geochemical Exploration, 2015, 148: 25-39.
[41]
王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480.
[42]
黄加忠, 杨明龙, 王晓龙, 等. 四川省瓦岗地区水系沉积物地球化学特征及找矿方向[J]. 华东地质, 2024, 45(3): 332-344.
[43]
翁望飞, 罗家元, 许振宇. 皖南外桐坑金矿床地质、地球化学特征及找矿模型[J]. 华东地质, 2023, 44(1): 13-27.

Comments

PDF(4865 KB)

Accesses

Citation

Detail

Sections
Recommended

/