Quantatitive robustness assessment of low-density geochemical mapping: An example of China’s cobalt

Dongsheng LIU, Xueqiu WANG, Lanshi NIE, Bimin ZHANG, Jian ZHOU, Hanliang LIU, Wei WANG, Qinghua CHI, Shanfa XU

PDF(7972 KB)
PDF(7972 KB)
Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1) : 23-35. DOI: 10.13745/j.esf.sf.2024.10.34

Quantatitive robustness assessment of low-density geochemical mapping: An example of China’s cobalt

Author information +
History +

Abstract

Robustness is a fundamental scientific concern in low-density geochemical mapping, which has long garnered close attention from mapping researchers. However, quantitative understanding of robustness has been lacking due to the lack of effective quantitative assessment methods. In this study, using cobalt element data from two low-density mapping sources—the China Geochemical Baselines project (CGB) and the Regional Geochemical National Reconnaissance project (RGNR)—robustness is quantitatively assessed based on 1546 representative catchments through the utilization of local spatial correlation coefficients; the spatial distribution features and influencing factors are also discussed. On a national scale, robustness was influenced by sediment cobalt (Co) content and geochemical landscape conditions; on a local scale, it was affected by differential erosion in cobalt-rich and Co-poor source areas. In Co-poor environments (sediment Co<13 μg/g) the robustness index (R) value fluctuated around 0.4, while in Co-rich environments (sediment Co>13 μg/g) it increased from 0.4 to above 0.6 with rising Co content. Regions such as karst terrains, tropical rainforests, and semi-arid low hills had R values as high as 0.58 to 0.74, whereas alluvial plains and forested swamp regions had R values below 0.32. This study provides a reference for quantitative evaluaton of low-density mapping, deomonstrating that low-density geochemical mapping has good robustness and promising prospect in the global-scale geochemical mapping.

Key words

robustness / low-density geochemical mapping / cobalt / catchment / GW correlations

Cite this article

Download Citations
Dongsheng LIU , Xueqiu WANG , Lanshi NIE , et al . Quantatitive robustness assessment of low-density geochemical mapping: An example of China’s cobalt. Earth Science Frontiers. 2025, 32(1): 23-35 https://doi.org/10.13745/j.esf.sf.2024.10.34

References

[1]
WANG X Q, ZHANG B M, NIE L S, et al. Mapping chemical earth program: progress and challenge[J]. Journal of Geochemical Exploration, 2020, 217: 106578.
[2]
DARNLEY A G, BJORKLUND A, BOLVIKEN B, et al. A global geochemical database for environmental and resource management-Final Report of IGCP Project 259[R]. Paris, 1995.
[3]
王学求, 孙宏伟, 迟清华, 等. 地球化学异常再现性与可对比性[J]. 中国地质, 2005, 32(1): 135-140.
[4]
SMITH D B, REIMANN C. Low-density geochemical mapping and the robustness of geochemical patterns[J]. Geochemistry: Exploration, Environment, Analysis, 2008, 8(3/4): 219-227.
[5]
HALE M, PLANT J A. Drainage geochemistry[M]. Amsterdam: Elsevier Science B. V., 1996.
[6]
SALMINEN R, BATISTA M J, BIDOVEC M, et al. FOREGS geochemical atlas of Europe, Part 1: background information, methodology and maps[M]. Espoo: Geological Survey of Finland, 2006.
[7]
DE CARITAT P, COOPER M. National geochemical survey of Australia: the geochemical atlas of Australia[R]. Canberra: Geoscience Australia, 2011.
[8]
REIMANN C, FABIAN K, BIRKE M, et al. GEMAS: establishing geochemical background and threshold for 53 chemical elements in European agricultural soil[J]. Applied Geochemistry, 2018, 88: 302-318.
[9]
SHACKLETTE H T, BOERNGEN J G. Element concentrations in soils and other surficial materials of the conterminous United States[R]. Washington: United State Government Printing Office, 1984.
[10]
REIMANN C. Experiences from 30 years of low-density geochemical mapping at the subcontinental to continental scale in Europe[J]. Geochemistry: Exploration, Environment, Analysis, 2022, 22(4): geochem2022-030.
[11]
CICCHELLA D, LIMA A, BIRKE M, et al. Mapping geochemical patterns at regional to continental scales using composite samples to reduce the analytical costs[J]. Journal of Geochemical Exploration, 2013, 124: 79-91.
[12]
BIRKE M, REIMANN C, RAUCH U, et al. GEMAS: cadmium distribution and its sources in agricultural and grazing land soil of Europe: original data versus clr-transformed data[J]. Journal of Geochemical Exploration, 2017, 173: 13-30.
[13]
LIU D S, WANG X Q, NIE L S, et al. Comparison of geochemical patterns from different sampling density geochemical mapping in Altay, Xinjiang Province, China[J]. Journal of Geochemical Exploration, 2021, 228: 106761.
[14]
DARNLEY A G. A global geochemical reference network: the foundation for geochemical baselines[J]. Journal of Geochemical Exploration, 1997, 60(1): 1-5.
[15]
王学求. 全球地球化学基准: 了解过去, 预测未来[J]. 地学前缘, 2012, 19(3): 7-18.
[16]
TIAN K, LI M, HU W Y, et al. Environmental capacity of heavy metals in intensive agricultural soils: insights from geochemical baselines and source apportionment[J]. Science of the Total Environment, 2022, 819: 153078.
[17]
SHEN X C, YAN M C. Representativity of wide-spaced lower-layer overbank sediment geochemical sampling[J]. Journal of Geochemical Exploration, 1995, 55(1/2/3): 231-248.
[18]
成杭新, 谢学锦. 泛滥平原沉积物的超低密度采样代表性研究(一)[J]. 长春地质学院学报, 1997, 27(3): 289-295.
[19]
DEMETRIADES A. Overbank sediment sampling in Greece: a contribution to the evaluation of methods for the ‘global geochemical baselines’ mapping project[J]. Geochemistry: Exploration, Environment, Analysis, 2008, 8(3/4): 229-239.
[20]
聂兰仕. 不同密度数据所圈定的地球化学异常与大型卡林型金矿集区关系: 以黔西南矿集区为例[C]. 中国矿物岩石地球化学学会第15届学术年会论文摘要集, 2015.
[21]
BIRKE M, RAUCH U, STUMMEYER J. How robust are geochemical patterns? A comparison of low and high sample density geochemical mapping in Germany[J]. Journal of Geochemical Exploration, 2015, 154: 105-128.
[22]
GOSAR M, ŠAJN R, TERŠIČ T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets[J]. Journal of Geochemical Exploration, 2016, 167: 38-48.
[23]
程湘, 胡鹏, 战明国, 等. 低密度地球化学填图在热带雨林区的适用性探索: 以印度尼西亚苏门答腊岛巴东明古鲁地区为例[J]. 高校地质学报, 2021, 27(2): 200-210.
[24]
刘东盛, 迟清华, 王学求, 等. 华南—西秦岭地球化学走廊带水系沉积物钴含量影响因素评价[J]. 地质学报, 2023, 97(5): 1655-1669.
[25]
谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6): 700-716.
[26]
WANG X Q. China geochemical baselines: sampling methodology[J]. Journal of Geochemical Exploration, 2015, 148: 25-39.
[27]
卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1356-1366.
[28]
GLOAGUEN T V, PASSE J J. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil[J]. Chemosphere, 2017, 186: 31-42.
[29]
程志中, 王学求, 谢学锦, 等. 黑龙江森林沼泽区超低密度地球化学调查采样介质对比[J]. 物探与化探, 2005, 29(3): 201-204.
[30]
郭志娟, 孔牧, 张华, 等. 适合地球化学勘查的景观划分研究[J]. 物探与化探, 2015, 39(1): 12-15.
[31]
中国地质调查局. 中国人民共和国地质图1∶2500000[M]. 北京: 中国地图出版社, 2002.
[32]
ALBANESE S, SADEGHI M, LIMA A, et al. GEMAS: Cobalt, Cr, Cu and Ni distribution in agricultural and grazing land soil of Europe[J]. Journal of Geochemical Exploration, 2015, 154: 81-93.
[33]
刘东盛, 王学求, 周建, 等. 中国钴地球化学基准值特征及影响因素[J]. 地球学报, 2020, 41(6): 807-817.
[34]
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.
[35]
WEN Y B, LI W, YANG Z F, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the Karst region, Southwestern China[J]. Chemosphere, 2020, 245: 125620.
[36]
FRINA A. Principles and methods in landscape ecology: towards a science of landscape[M]. Dordrecht: Springer, 2006.
[37]
LARIMER J E, YANITES B J, JUNG S J. A field study on the lithological influence on the interaction between weathering and abrasion processes in bedrock rivers[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(4): e2021JF006418.
[38]
刘雪敏, 王学求. 全球尺度地球化学填图计划对比研究[J]. 地学前缘, 2014, 21(2): 275-285.

Comments

PDF(7972 KB)

Accesses

Citation

Detail

Sections
Recommended

/