
Quantatitive robustness assessment of low-density geochemical mapping: An example of China’s cobalt
Dongsheng LIU, Xueqiu WANG, Lanshi NIE, Bimin ZHANG, Jian ZHOU, Hanliang LIU, Wei WANG, Qinghua CHI, Shanfa XU
Quantatitive robustness assessment of low-density geochemical mapping: An example of China’s cobalt
Robustness is a fundamental scientific concern in low-density geochemical mapping, which has long garnered close attention from mapping researchers. However, quantitative understanding of robustness has been lacking due to the lack of effective quantitative assessment methods. In this study, using cobalt element data from two low-density mapping sources—the China Geochemical Baselines project (CGB) and the Regional Geochemical National Reconnaissance project (RGNR)—robustness is quantitatively assessed based on 1546 representative catchments through the utilization of local spatial correlation coefficients; the spatial distribution features and influencing factors are also discussed. On a national scale, robustness was influenced by sediment cobalt (Co) content and geochemical landscape conditions; on a local scale, it was affected by differential erosion in cobalt-rich and Co-poor source areas. In Co-poor environments (sediment Co<13 μg/g) the robustness index (R) value fluctuated around 0.4, while in Co-rich environments (sediment Co>13 μg/g) it increased from 0.4 to above 0.6 with rising Co content. Regions such as karst terrains, tropical rainforests, and semi-arid low hills had R values as high as 0.58 to 0.74, whereas alluvial plains and forested swamp regions had R values below 0.32. This study provides a reference for quantitative evaluaton of low-density mapping, deomonstrating that low-density geochemical mapping has good robustness and promising prospect in the global-scale geochemical mapping.
robustness / low-density geochemical mapping / cobalt / catchment / GW correlations
[1] |
|
[2] |
|
[3] |
王学求, 孙宏伟, 迟清华, 等. 地球化学异常再现性与可对比性[J]. 中国地质, 2005, 32(1): 135-140.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
王学求. 全球地球化学基准: 了解过去, 预测未来[J]. 地学前缘, 2012, 19(3): 7-18.
|
[16] |
|
[17] |
|
[18] |
成杭新, 谢学锦. 泛滥平原沉积物的超低密度采样代表性研究(一)[J]. 长春地质学院学报, 1997, 27(3): 289-295.
|
[19] |
|
[20] |
聂兰仕. 不同密度数据所圈定的地球化学异常与大型卡林型金矿集区关系: 以黔西南矿集区为例[C]. 中国矿物岩石地球化学学会第15届学术年会论文摘要集, 2015.
|
[21] |
|
[22] |
|
[23] |
程湘, 胡鹏, 战明国, 等. 低密度地球化学填图在热带雨林区的适用性探索: 以印度尼西亚苏门答腊岛巴东明古鲁地区为例[J]. 高校地质学报, 2021, 27(2): 200-210.
|
[24] |
刘东盛, 迟清华, 王学求, 等. 华南—西秦岭地球化学走廊带水系沉积物钴含量影响因素评价[J]. 地质学报, 2023, 97(5): 1655-1669.
|
[25] |
谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6): 700-716.
|
[26] |
|
[27] |
卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1356-1366.
|
[28] |
|
[29] |
程志中, 王学求, 谢学锦, 等. 黑龙江森林沼泽区超低密度地球化学调查采样介质对比[J]. 物探与化探, 2005, 29(3): 201-204.
|
[30] |
郭志娟, 孔牧, 张华, 等. 适合地球化学勘查的景观划分研究[J]. 物探与化探, 2015, 39(1): 12-15.
|
[31] |
中国地质调查局. 中国人民共和国地质图1∶2500000[M]. 北京: 中国地图出版社, 2002.
|
[32] |
|
[33] |
刘东盛, 王学求, 周建, 等. 中国钴地球化学基准值特征及影响因素[J]. 地球学报, 2020, 41(6): 807-817.
|
[34] |
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.
|
[35] |
|
[36] |
|
[37] |
|
[38] |
刘雪敏, 王学求. 全球尺度地球化学填图计划对比研究[J]. 地学前缘, 2014, 21(2): 275-285.
|
/
〈 |
|
〉 |