Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid

Chiyang LIU, Long ZHANG, Lei HUANG, Bailin WU, Jianqiang WANG, Dongdong ZHANG, Chengqian TAN, Yanping MA, Jianshe ZHAO

PDF(8074 KB)
PDF(8074 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1) : 368-383. DOI: 10.13745/j.esf.sf.2024.1.7

Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid

Author information +
History +

Abstract

Most existing metallogenic models maintain that sandstone-type uranium (U) deposits are formed by infiltration of exogenous uranium carried by near-surface oxygenated waters from erosion source areas into basins. However, this study finds that these traditional models fail to explain the geological evolution, geomorphological characteristics, and mineralization of sandstone-type uranium deposits in eastern Yimeng Uplift, northern Ordos Basin. The key issue is the material source of uranium mineralization. Geochemical analysis of representative minerals from this area, including coffinite (formed in a strongly reducing environment) and its associated minerals, reveal the existence of two distinct uranium mineralization environments: low-salinity meteoric waters and medium-high-salinity hydrothermal fluids, and primary uranium mineralization occurred less than 80 Ma. Considering the U-rich source rocks of coal-bearing strata in the basin, the enormous dissipation of natural gas, and the widespread distribution of various hydrocarbon alteration products and condensate oil traces related to the dissipation of mature coal-type gas in the Yimeng Uplift, a novel metallogenic model of large uranium deposits is proposed based on comprehensive simulation experiments and testing analysis. According to the new model, the uranium source originates from deep U-rich coal strata in the middle of the basin, where dissolved gases from thermal fluids migrate and dissipate towards higher elevations in the eastern Yimeng Uplift, extracting and carrying uranium from the source rock and uranium-rich strata along the way to shallower layers to cause sparry calcite and coffinite to precipitate as temperature/pressure decreases; meanwhile along with the near-surface, low temperature mineralization, massive exsolved natural gas creates a reducing environment for the preservation of uranium deposits. This new model of uranium mineralization opens up new horizons for uranium exploration in terms of exploration approaches and domains, and strengthens the scientific basis for polymineralization involving different mineral (metallic, non-metallic) and energy (hydrothermal, hydrocarbon) types, as well as prediction and evaluation of such polyminealization occurrences.

Key words

novel uranium metallogenic model / deep uranium source / natural gas dissipation / hydrothermal mineralization / northern ordos basin / Yimeng uranium district

Cite this article

Download Citations
Chiyang LIU , Long ZHANG , Lei HUANG , et al . Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid. Earth Science Frontiers. 2024, 31(1): 368-383 https://doi.org/10.13745/j.esf.sf.2024.1.7

References

[1]
REYNOLDS R L, GOLDHABER M B, CARPENTER D J. Biogenic and nonbiogenic ore-forming processes in the south Texas uranium district: evidence from the Panna Maria deposit[J]. Economic Geology, 1982, 77(3): 541-556.
[2]
SPIRAKIS C S. The roles of organic matter in the formation of uranium deposits in sedimentary rocks[J]. Ore Geology Reviews, 1996, 11: 53-69
[3]
余达淦, 吴仁贵, 陈培荣. 铀资源地质学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2005.
[4]
金若时, 陈印, 司庆红, 等. 鄂尔多斯盆地砂岩型铀矿成矿作用[M]. 北京: 科学出版社, 2020.
[5]
刘池洋, 邱欣卫, 吴柏林, 等. 中-东亚能源矿产成矿域基本特征及其形成的动力学环境[J]. 中国科学: 地球科学, 2007, 37(增刊I): 1-15.
[6]
吴柏林, 刘池洋, 杨松林, 等. 沉积盆地有机矿产(油-气-煤)对铀成矿的作用机理及进展[J]. 西北大学学报(自然科学版), 2022, 52(6): 1044-1065.
[7]
张金带, 徐高中, 林锦荣, 等. 中国北方6种新的砂岩型铀矿对铀资源潜力的提示[J]. 中国地质, 2010, 37(5): 1434-1449.
[8]
ZHANG L, LIU C, FAYEK M, et al. Hydrothermal mineralization in the sandstone-hosted Hangjinqi uranium deposit, North Ordos Basin, China[J]. Ore Geology Reviews, 2017, 80: 103-115.
[9]
李子颖, 方锡珩, 秦明宽, 等. 鄂尔多斯盆地北部砂岩铀成矿作用[M]. 北京: 地质出版社, 2019.
[10]
中国地质调查局地层古生物研究中心. 中国各地质时代地层划分与对比[M]. 北京: 地质出版社, 2005.
[11]
刘池洋, 赵红格, 桂小军, 等. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J]. 地质学报, 2006, 80(5): 617-638.
[12]
叶得泉, 钟筱春, 石宝蘅, 等. 中国北方含油气区白垩系[M]. 北京: 石油工业出版社, 1990.
[13]
《长庆油田石油地质志》编写组. 中国石油地质志卷十二: 长庆油田[M]. 北京: 石油工业出版社, 1992.
[14]
吴柏林, 刘池阳, 张复新, 等. 东胜砂岩型铀矿后生蚀变地球化学性质及其成矿意义[J]. 地质学报, 2006, 80(5): 740-747.
[15]
李荣西, 赫英, 李金保, 等. 东胜铀矿流体包裹体同位素组成与成矿流体来源研究[J]. 地质学报, 2006, 80(5): 753-760.
[16]
柳益群, 冯乔, 杨仁超, 等. 鄂尔多斯盆地东胜地区砂岩型铀矿成因探讨[J]. 地质学报, 2006, 80(5): 761-767.
[17]
张龙, 刘池洋, 赵中平, 等. 鄂尔多斯盆地杭锦旗地区砂岩型铀矿流体作用与成矿[J]. 地学前缘, 2015, 22(3): 368-381.
[18]
任战利, 张盛, 高胜利, 等. 伊盟隆起东胜地区热演化史与多种能源矿产的关系[J]. 石油与天然气地质, 2006, 27(2): 187-193.
[19]
刘池洋, 吴柏林. 油气煤铀同盆共存成藏(矿)机理与富集分布规律[M]. 北京: 科学出版社, 2016.
[20]
JIN R, MIAO P, SIMA X, et al. Structure styles of Mesozoic-Cenozoic U-bearing rock series in Northern China[J]. Acta Geologica Sinica (English Edition), 2016, 90(6): 2104-2116.
[21]
王龙辉, 剡鹏兵, 焦养泉, 等. 鄂尔多斯盆地北部下白垩统铀成矿模式[J]. 地质科技通报, 2023, 42(3): 222-233.
[22]
向伟东, 方锡珩, 李田港, 等. 鄂尔多斯盆地东胜铀矿床成矿特征与成矿模式[J]. 铀矿地质, 2006, 22(5): 257-266.
[23]
MORAD S. Carbonate Cementation in sandstones: distribution patterns and geochemical evolution[C]// MORAD S. Carbonate cementation in sandstones: International Association of Sedimentologists special publication 26. Oxford:Blackwell Publishing, 1998: 1-26.
[24]
BEIER J A, FELDMAN H R. Sulfur isotopes and paragenesis of sulfide minerals in the Silurian Waldron Shale, southern Indiana[J]. Geology, 1991, 19(4): 389-392.
[25]
SHUAI Y, ZHANG S, PENG P, et al. Occurrence of heavy carbon dioxide of organic origin: evidence from confined dry pyrolysis of coal[J]. Chemical Geology, 2013, 358: 54-60.
[26]
SHUAI Y, ZHANG S, MI J, et al. Charging time of tight gas in the Upper Paleozoic of the Ordos Basin, central China[J]. Organic Geochemistry, 2013, 64: 38-46.
[27]
杨智, 付金华, 刘新社, 等. 苏里格气田上古生界连续型致密气形成过程[J]. 深圳大学学报(理工版), 2016, 33(3): 221-233.
[28]
彭威龙, 胡国艺, 黄士鹏, 等. 天然气地球化学特征及成因分析: 以鄂尔多斯盆地东胜气田为例[J]. 中国矿业大学学报, 2017, 46(1): 74-84.
[29]
李荣西, 邸领军, 席胜利. 鄂尔多斯盆地米脂气田天然气逸散: 流体包裹体证据[J]. 中国科学: 地球科学, 2007, 37(增刊I): 103-109.
[30]
张复新, 乔海明, 贾恒. 内蒙古东胜砂岩型铀矿床形成条件与成矿作用[J]. 地质学报, 2006, 80(5): 733-739.
[31]
INGHAM E S, COOK N J, CLIFF J, et al. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia[J]. Geochimica et Cosmochimica Acta, 2014, 125: 440-465.
[32]
CAI C, HU G, HE H, et al. Geochemical characteristics and origin of natural gas and thermochemical sulphate reduction in Ordovician carbonates in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2005, 48(3/4): 209-226.
[33]
姚泾利, 魏新善, 张道锋, 等. 硬石膏结核白云岩沉积微相: 以鄂尔多斯盆地东部马五13小层为例[J]. 石油勘探与开发, 2010, 37(6): 690-695.
[34]
刘池洋, 杨兴科. 改造盆地研究和油气评价的思路[J]. 石油与天然气地质, 2000, 21(1): 11-14.
[35]
刘池洋, 王建强, 张东东, 等. 鄂尔多斯盆地油气资源丰富的成因与赋存-成藏特点[J]. 石油与天然气地质, 2021, 42(5): 1011-1029.
[36]
任战利, 张盛, 高胜利, 等. 鄂尔多斯盆地构造热演化史及其成藏成矿意义[J]. 中国科学: 地球科学, 2007, 37(增刊I): 23-32.
[37]
杨华, 刘新社, 闫小雄. 鄂尔多斯盆地晚古生代以来构造-沉积演化与致密砂岩气成藏[J]. 地学前缘, 2015, 22(3): 174-183.
[38]
冯乔. 鄂尔多斯盆地北部上古生界天然气向北运移散失[M]//刘池洋, 吴柏林. 油气煤铀同盆共存成藏(矿)机理与富集分布规律[M]. 北京: 科学出版社, 2016: 446-464.
[39]
冯乔, 张小莉, 王云鹏, 等. 鄂尔多斯盆地北部上古生界油气运聚特征及其铀成矿意义[J]. 地质学报, 2006, 20(5): 748-752.
[40]
HIGGS K E, FUNNELL R H, REYES A G. Changes in reservoir heterogeneity and quality as a response to high partial pressures of CO2 in a gas reservoir, New Zealand[J]. Marine and Petroleum Geology, 2013, 48: 293-322.
[41]
帅燕华, 张水昌, 高阳, 等. 煤系有机质生气行为对储层致密化的可能影响及定量化评价[J]. 中国科学: 地球科学, 2013, 43 (7): 1149-1155.
[42]
DAI J, LI J, LUO X, et al. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China[J]. Organic Geochemistry, 2005, 36(12): 1617-1635.
[43]
戴金星, 倪云燕, 胡国艺, 等. 中国致密砂岩大气田的稳定碳氢同位素组成特征[J]. 中国科学: 地球科学, 2014, 44(4): 563-578.
[44]
刘友民. 陕甘宁盆地北缘乌兰格尔地区白垩系油苗成因及意义[J]. 石油勘探与开发, 1982(3): 39-43.
[45]
ZHANG L, LIU C, LEI K. Green altered sandstone related to hydrocarbon migration from the uranium deposits in the northern Ordos Basin, China[J]. Ore Geology Reviews, 2019, 109: 482-493.
[46]
ZHANG L, LIU C, ZHANG S, et al. Unconformity-controlled bleaching of Jurassic-Triassic sandstones in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110154.
[47]
马艳萍, 刘池洋, 赵俊峰, 等. 鄂尔多斯盆地东北部砂岩漂白现象与天然气逸散的关系[J]. 中国科学: 地球科学, 2007, 37(增刊I): 127-138.
[48]
吴柏林, 刘池洋, 魏安军, 等. 鄂尔多斯盆地沉积地层放射性异常及分布特征[M]//刘池洋, 吴柏林. 油气煤铀同盆共存成藏(矿)机理与富集分布规律. 北京: 科学出版社, 2016: 504-549.
[49]
谭成仟, 刘池洋. 鄂尔多斯盆地沉积地层放射性异常及分布特征[M]//刘池洋, 吴柏林. 油气煤铀同盆共存成藏(矿)机理与富集分布规律. 北京: 科学出版社, 2016: 390-414.
[50]
赵建社, 梁玲玲, 蔡义各, 等.刘池洋, 吴柏林. 油气煤铀同盆共存成藏(矿)机理与富集分布规律. 北京: 科学出版社, 2016: 823-831.
[51]
妥进才, 张明峰, 王先彬. 鄂尔多斯盆地北部东胜铀矿区沉积有机质中脂肪酸甲酯的检出及意义[J]. 沉积学报, 2006, 24(3): 432-439.
[52]
徐雁前, 刘生梅, 段毅. 柴达木盆地第四系沉积物中长链脂肪酸乙酯化合物的检出及意义[J]. 沉积学报, 1994, 12(3): 99-105.
[53]
瞿文川, 王苏民, 张平中, 等. 太湖沉积物中长链脂肪酸甲酯化合物的检出及意义[J]. 湖泊科学, 1999, 11(3): 245-250.
[54]
张金带, 简晓飞, 郭庆银, 等. 中国北方中新生代沉积盆地铀矿资源调查评价[M]. 北京: 地质出版社, 2013.
[55]
RAO L, GARNOV A Y, JIANG J, et al. Complexation of uranium(VI) and samarium(III) with oxydiacetic acid: temperature effect and coordination modes[J]. Inorganic Chemistry, 2003, 42(11): 3685-3692.
[56]
BROOKS S C, FREDRICKSON J K, CARROLL S L, et al. Inhibition of bacterial U(VI) reduction by calcium[J]. Environmental Science & Technology, 2003, 37(9): 1850-1858.
[57]
BRANDY D S, RICHARD T A, PETER S N. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions[J]. Geomicrobiology Journal, 2011, 28: 444-456.
[58]
SINGER D M, MAHER K, BROWN J G E. Uranyl-chlorite sorption/desorption: evaluation of different U(VI) sequestration processes[J]. Geochimica et Cosmochimica Acta, 2009, 73(20): 5989-6007.
[59]
MCLENNAN S M, TAYLOR S R. Rare earth element mobility associated with uranium mineralisation[J]. Nature, 1979, 282(5736): 247-250.
[60]
WAN J, TOKUNAGA T K, BRODIE E, et al. Reoxidation of bioreduced uranium under reducing conditions[J]. Environmental Science Technology, 2005, 39(16): 6162-6169.

Comments

PDF(8074 KB)

Accesses

Citation

Detail

Sections
Recommended

/