
Meta-Earth and Digital Twin: Breakthrough concept, technological revolution and paradigm shift
Sanzhong LI, Yanhui SUO, Liming DAI, Liangliang WANG, Zhaoxia JIANG, Xianzhi CAO, Guohui SU, Lijun LIU, Jianping ZHOU, Xiyao LI, Jie LIU, Junjiang ZHU, Lulu QIAO, Guangzeng WANG, Suhua JIANG, Xiujuan WANG, Lin LIU, Hongxiang GUAN, Xiaohui LI, Jun HU, Peng LIU, Ze LIU, Dongdong DONG, Lingli GUO, Zhihui ZOU, Hao DONG, Shihua ZHONG, Guozheng SUN, Yang LIU, Shengyao YU, Lixin WU, Zhuoyan ZOU, Yi SUN
Meta-Earth and Digital Twin: Breakthrough concept, technological revolution and paradigm shift
Digital Twin has been used in aerospace and industrial manufacturing for more than 20 years, but it is only introduced into marine science recently. Here we adopt Digital Twin technology to realize the integration of real- and virtual-Earth, and build a virtual-real, symbiotic community of real- and digital-Earth which we call “meta-Earth.” We first summarize the essential differences between meta-Earth and the early proposed digital-Earth, virtual-Earth, glass-Earth and smart-Earth, and then highlight the great breakthroughs in the concept or idea of “meta-Earth.” The core idea is that under the current metaverse BIGANT technic system we can realize gapless, cross-sphere dynamic simulation of the Earth system, which allow to build a global, multi-sphere, real-time, all-weather, three-dimensional Earth observing system, reconstruct the deep-time Earth beyond the present-day Earth, and realize space-time travel. By doing so we can integrate all previous Earth models—digital, virtual, glass, smart, present and deep-time—into a community called meta-Earth. This novel concept should bring a technological paradigm shift surpassing real- and virtual-Earth, thus opening a new way for mankind to understand, explore and develop the Earth. Promoting multi-tier application of meta-Earth while making research paradigm shift shall advance the development of new trillion-RMB industries in the future.
meta-Earth / real-Earth / virtual-Earth / digital-Earth / digital twin / Earth system / paradigm
[1] |
冯学智, 都金康. 数字地球导论[M]. 北京: 商务印书馆, 2007: 1-288.
|
[2] |
|
[3] |
吴冲龙, 刘刚, 田宜平, 等. 地质信息科学与技术概论[M]. 北京: 科学出版社, 2014: 1-521.
|
[4] |
邢杰, 赵国栋, 徐远重, 等. 元宇宙通证: 通向未来的护照[M]. 北京: 中国出版集团中译出版社, 2021: 1-125.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
郭沙, 赵勇, 谷瑞翔, 等. 数字经济的基础支撑: 数字孪生[M]. 北京: 中国财富出版社有限公司, 2021: 1-351.
|
[9] |
|
[10] |
|
[11] |
李三忠, 索艳慧, 刘博, 等. 微板块构造理论: 全球洋内与陆缘微地块研究的启示[J]. 地学前缘, 2018, 25(5): 324-355.
|
[12] |
李三忠, 曹现志, 王光增, 等. 太平洋板块中新生代构造演化及板块重建[J]. 地质力学学报, 2019, 25(5): 642-677.
|
[13] |
李三忠, 索艳慧, 王光增, 等. 海底 “三极” 与地表 “三极”: 动力学关联[J]. 海洋地质与第四纪地质, 2019, 39(5): 1-22.
|
[14] |
李三忠, 王光增, 索艳慧, 等. 板块驱动力: 问题本源与本质[J]. 大地构造与成矿学, 2019, 43(4): 605-643.
|
[15] |
李三忠, 索艳慧, 周洁, 等. 微板块与大板块: 基本原理与范式转换[J]. 地质学报, 2022, 96(10): 3541-3558.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
黄冬梅, 邹国良. 海洋大数据[M]. 上海: 上海科学技术出版社, 2016: 1-193.
|
[22] |
李安波, 周良辰, 闾国年. 地质信息系统[M]. 北京: 科学出版社, 2013: 1-244.
|
[23] |
李剑峰, 肖波, 肖莉, 等. 智能油田(上册、 下册)[M]. 北京: 中国石化出版社, 2020: 1-699.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
戴自希, 王家枢. 矿产勘查百年[M]. 北京: 地震出版社, 2004.
|
[29] |
|
[30] |
翟裕生, 林新多. 矿田构造学[M]. 北京: 地质出版社, 1993: 1-214.
|
[31] |
|
/
〈 |
|
〉 |