
Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau
Demin LIU, Jie WANG, Huai JIANG, Yue ZHAO, Tieying GUO, Weiran YANG
Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau
The formation of the Qinghai-Tibet Plateau as Earth's “third pole” is the most distinguishing and significant result of neotectonic movements under Earth's rhythmic tectonic events since the Cenozoic era. The characteristics and importance of tectonic landforms in the region, the tectonic regime of the plateau, the evolutionary dynamics and the impact and long-range effects of the plateau uplift on peripheral basins and even the entire Chinese subcontinent have been the focus of academic attention to this day. This article redefines the range of tectonic landforms of the Qinghai-Tibet Plateau, and establishes the importance of the plateau uplift to global tectonics. According to the results, the remote effects of the Qinghai-Tibet Plateau and its south/north extension spans across Asian along 105°E longitude, in general, reaching the Arctic Ocean in the north and reaching the Pacific Ocean in the south. Hence, this article uses the large circle of 105°E longitude as the dividing line between the Eastern (to the east of the line) and Western Hemispheres. The Qinghai-Tibet Plateau is location at the intersection of the world's largest and most important north-south and east-west structures, and the Pamir Plateau is the backbone of regional structures. The Qinghai-Tibet Plateau originates from the Pamir Plateau, a thermal dome during the Indosinian period, which later transformed into an abnormal gravity column with a diameter of 200 km and sank 600 km vertically to form a vertical open-close structure to be completed in the Cretaceous period. From the Pamir Plateau at the center there are three horizontal compressional-extensional tectonics expanding to the east, and one to the west. During the Xishan period, the Pamir Plateau also experienced igneous intrusion, while its Cretaceous structure remained largely undeformed. In the Paleogene, the India-Asia collision formed the magnificent Himalayan orogenic belt that was first compressed and then uplifted. Expanding northward from the Himalayas three mantle branches rose during the Quaternary, causing the entire Qinghai-Tibet Plateau to rise. According to the deep dynamics model established in this article, the early stage of the plateau uplift is manly manifested by centrifugal movement of geological bodies in vertical direction and extensional movement in horizontal direction, and the later stage of mainly compression, is manifested by centripetal vertical movement and horizontal compression movement of geological bodies. In terms of driving force, thermal energy is the main driving force in the early stage and gravity potential energy in the later stage.
The uplift of the Qinghai-Tibet Plateau is the most remarkable geological event of the Cenozoic era within the Eurasian continent. It has direct impacts on the shallow lithosphere and the crust's surface layer through short- and long-range effects, affecting topography, energy and natural resources, ecology, environment, and geohazards closely related to human survival and development. Under the remote effects of the Qinghai-Tibet Plateau uplift the Baikal Lake Rift, the Fenwei Rift, and the East Africa Great Rift Valley are formed. Finally, five issues are briefly discussed: the naming and timing of the Indosinian movement; the timing of start/termination and types of the Indosinian movement; the Qinghai-Tibet Plateau being the best place to study various types of orogenic belts; the determination of the eastern and western tectonic structures of the Himalayan orogenic belt; and the exploration of the four-dimensional dynamics model of the Pamir Plateau.
Qinghai-Tibet Plateau / Pamir Plateau / geothermal energy / mantle branch / geodynamics / tectonic evolution / remote effects
[1] |
|
[2] |
|
[3] |
赵俊猛, 张培震, 张先康, 等. 中国西部壳幔结构与动力学过程及其对资源环境的制约: “羚羊计划” 研究进展[J]. 地学前缘, 2021, 28(5): 230-259.
|
[4] |
潘桂棠, 刘宇平, 郑来林, 等. 青藏高原碰撞构造与效应[M]. 广州: 广东科技出版社, 2013.
|
[5] |
潘桂棠, 王立全, 尹福光, 等. 青藏高原形成演化研究回顾、 进展与展望[J]. 沉积与特提斯地质, 2022, 42(2): 151-175.
|
[6] |
吴珍汉, 吴中海, 胡道功, 等. 青藏高原新生代构造演化与隆升过程[M]. 北京: 地质出版社, 2009.
|
[7] |
韩慕康. 构造地貌学[J]. 地球科学进展, 1992, 7(5): 61-62.
|
[8] |
刘德民, 李德威, 谢德凡, 等. 喜马拉雅造山带中段北坡构造地貌初步研究[J]. 地球科学: 中国地质大学学报, 2003, 28(6): 639-644.
|
[9] |
马宗晋, 杜品仁, 高祥林. 全球构造研究的思考[J]. 地学前缘, 2003(增刊): 1-4.
|
[10] |
马瑾, 郭彦双. 失稳前断层加速协同化的实验室证据和地震实例[J]. 地震地质, 2014, 36(3): 547-560.
|
[11] |
|
[12] |
马宗晋, 郑大林. 中蒙大陆中轴构造带及其地震活动[J]. 地震研究, 1981(4): 421-436.
|
[13] |
刘德民, 杨巍然, 郭铁鹰. 藏南地区新生代多阶段构造演化及其动力学的探讨[J]. 地学前缘, 2020, 27(1): 194-203.
|
[14] |
任纪舜. 1∶500万国际亚洲地质图[CM]. 北京: 地质出版社, 2013.
|
[15] |
许志琴, 马绪宣. 中国大陆显生宙俯冲型、 碰撞型和复合型片麻岩穹窿(群)[J]. 岩石学报, 2015, 31(12): 3509-3523.
|
[16] |
李江海. 全球中新生代大地构造图及说明书[M]. 北京: 科学出版社, 2017.
|
[17] |
杨巍然, 姜春发, 张抗, 等. 运用开合旋构造观探究地球内部是如何运行的[J]. 地学前缘, 2020, 27(1): 204-210.
|
[18] |
杨巍然, 王新华, 徐文燕. 怀柔汤河口地区推覆构造特征. 地质科技情报, 1973(5): 102-113.
|
[19] |
杨巍然. 论造山作用和造山带[J]. 地学前缘, 1999, 6(1): 10-14.
|
[20] |
任雅琼, 马瑾, 刘培洵, 等. 平直断层黏滑过程热场演化及失稳部位识别的实验研究[J]. 地震地质, 2016, 38(1): 65-76.
|
[21] |
杨巍然, 王杰, 梁晓. 亚洲大地构造基本特征和演化规律[J]. 地学前缘, 2012, 19(5): 1-17.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
李晓蓉, 张波, 张进江, 等. 喜马拉雅造山带亚东地区晚新生代剥露历史及其构造意义: 来自磷灰石和锆石(U-Th)/He数据的约束[J]. 岩石学报, 2022, 96(4): 1143-1162.
|
[28] |
|
[29] |
|
[30] |
杨巍然, 李志新, 王勇新, 等. 世界七大洲最高峰构造对比[J]. 地学前缘, 2000, 7(2): 587-603.
|
[31] |
|
[32] |
刘树根, 李智武,
|
[33] |
|
[34] |
|
[35] |
梁光河. 贝加尔裂谷和汾渭地堑成因与印度欧亚碰撞的远程效应[J]. 地学前缘, 2023, 30(3): 282-293.
|
[36] |
马瑾, 刘力强, 刘培洵, 等. 断层失稳错动热场前兆模式: 雁列断层的实验研究[J]. 地球物理学报, 2007, 50(4): 1141-1149.
|
[37] |
|
[38] |
|
[39] |
於文辉, 何发岐, 袁茂山, 等. 超级地幔树对全球构造的控制作用[J/OL]. 地质学报, 2024, 98[2023-12-20]. http://www.geojournals.cn/dzxb/dzxb/article/abstract/2024040.
|
[40] |
杨文采. 从地壳上地幔构造看大陆岩石圈伸展与裂解[J]. 地质论评, 2014, 60(5): 945-961.
|
[41] |
杨巍然, 纪克诚, 孙继源, 等. 大陆裂谷研究中的几个前沿课题[J]. 地学前缘, 1995, 2(1/2): 93-102.
|
[42] |
冯锐, 马宗晋, 方剑, 等. 发展中的板块边界: 天山—贝加尔活动构造带[J]. 地学前缘, 2007, 14(4): 1-17.
|
[43] |
杨巍然, 隋志龙,
|
[44] |
赵俊猛, 杜品仁. 印度-亚洲大陆的初始碰撞[J]. 地震地质, 2016, 38(3): 783-796.
|
[45] |
|
[46] |
|
[47] |
刘光勋, 马廷著, 黄佩玉, 等. 中国东部活动断裂的现代构造运动[J]. 地震地质, 1982, 4(4): 1-14.
|
[48] |
|
[49] |
李德威. 青藏高原南部晚新生代板内造山与动力成矿[J]. 地学前缘, 2004, 11(4): 361-370.
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
崔作舟, 尹周勋, 高恩元, 等. 青藏高原速度结构和深部构造[M]. 北京: 地质出版社, 1992.
|
[56] |
马杏垣, 游振东, 谭应佳, 等. 中国大地构造的几个基本问题[J]. 地质学报, 1961, 41(1): 30-41.
|
[57] |
МА С Ю马杏垣, ЯН В Ж杨巍然. Некоторые основные вопросы геотектоники Китая[J]. 中国地质科学院院刊, 1962, 11(4): 529-548.
|
[58] |
王谦身, 滕吉文, 陈石, 等. 西构造结: 帕米尔及周边深部结构与构造探榷[J]. 地球物理学报, 2020, 63(8): 2970-2977.
|
[59] |
吴双鹏, 张泽明, 田作林, 等. 东喜马拉雅构造结高压基性麻粒岩成因与构造意义[J]. 地质学报, 2024, 98(1): 96-115.
|
/
〈 |
|
〉 |