Quantitative research on metallogenic regularity of gold deposits in China based on geological big data

Yan WANG, Denghong WANG, Chenghui WANG, Hua LI, Jinyu LIU, He SUN, Xinyu GAO, Yanan JIN, Yan QIN, Fan HUANG

PDF(15257 KB)
PDF(15257 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4) : 438-455. DOI: 10.13745/j.esf.sf.2023.9.6

Quantitative research on metallogenic regularity of gold deposits in China based on geological big data

Author information +
History +

Abstract

Against the backdrop of big data science emerging as a new scientific paradigm, traditional qualitative geological research methods are transitioning towards quantitative research grounded in the concept of geological big data. Leveraging data from over 5300 gold deposits, this study quantitatively analyzes the metallogenic density and intensity of gold deposits across provincial (autonomous region), city, county, and Grade III metallogenic zones in China, as well as the metallogenic intensity of gold deposits across different metallogenic ages. The findings reveal a pronounced trend of spatiotemporal concentration distribution of gold deposits in China. Spatially, gold deposits exhibit regional concentration, with areas such as Jiaodong and Qinling emerging as high-density and high-intensity gold deposit regions. Xinjiang boasts the highest number of gold deposits, whereas Shandong Province exhibits the highest metallogenic density and intensity. At the prefectural city level, Yantai City in Shandong Province and Chengde City in Hebei Province stand out as the only two prefecture-level cities in China with over 100 gold deposits each. Among these, Yantai City in Shandong Province ranks first in terms of mineral producing areas, metallogenic density, and metallogenic intensity. At the county level, Toli County in Tacheng region of Xinjiang houses the largest number of gold deposits (52), Tongling district in Anhui exhibits the highest metallogenic density, and Laizhou City in Yantai, Shandong, holds the largest gold reserves (2341 t) and the strongest metallogenic intensity (1.35 t/km2). Analysis of metallogenic belts reveals that the eastern section of the northern margin of the North China block, particularly metallogenic belt (III-57), boasts the largest number of gold deposits (345), while the Jiaodong metallogenic belt (III-65) exhibits the highest metallogenic density and intensity. Temporally, gold deposits in China display an unbalanced distribution characterized by old-weak and new-strong mineralization, significant differences between north and south, a broad metallogenic time span, and substantial Cenozoic gold resource potential. The Yanshanian period emerges as the most significant metallogenic period for gold deposits in China, characterized by high metallogenic intensity, with 10.5 deposits/Ma and 93 t/Ma. Looking ahead, the focal point of China’s gold geological efforts will be to reinforce gold prospecting activities to safeguard national financial security.

Key words

gold deposit / geological big data / metallogenic regularity / metallogenic density / metallogenic intensity / quantitative analysis

Cite this article

Download Citations
Yan WANG , Denghong WANG , Chenghui WANG , et al . Quantitative research on metallogenic regularity of gold deposits in China based on geological big data. Earth Science Frontiers. 2024, 31(4): 438-455 https://doi.org/10.13745/j.esf.sf.2023.9.6

References

[1]
魏春霞. 中国金矿资源的现状及前景分析[J]. 中国金属通报, 2018(1): 19-20.
[2]
赵鹏大. 大数据时代需重视数字地质研究[N]. 中国国土资源报, 2013-03-14(1).
[3]
成秋明. 什么是数学地球科学及其前沿领域?[J] 地学前缘, 2021, 28(3): 6-25.
[4]
于萍萍, 陈建平, 柴福山, 等. 基于地质大数据理念的模型驱动矿产资源定量预测[J]. 地质通报, 2015, 34(7): 1333-1343.
[5]
陈建平, 李靖, 谢帅, 等. 中国地质大数据研究现状[J]. 地质学刊, 2017, 41(3): 353-366.
[6]
王登红, 刘新星, 刘丽君. 地质大数据的特点及其在成矿规律、成矿系列研究中的应用[J]. 矿床地质, 2015, 34(6): 1143-1154.
[7]
王岩, 王登红, 王永磊, 等. 基于地质大数据的中国锑矿空间分布规律定量研究[J]. 中国地质, 2021, 48(1): 52-67.
[8]
杨林, 王庆飞, 赵世宇, 等. 造山型金矿构造控矿作用[J]. 岩石学报, 2023, 39(2): 277-292.
[9]
池顺都. 应用GIS进行成矿强度和广度的定量分析: 以云南澜沧江流域地层成矿分析为例[J]. 现代地质, 1999, 13(3): 323-328.
[10]
王岩, 王登红, 盛继福, 等. 中国钨矿成矿密度和成矿强度的定量分析[J]. 中国钨业, 2018, 33(1): 17-31.
[11]
周振菊, 蒋少涌, 秦艳, 等. 小秦岭文峪金矿床流体包裹体研究及矿床成因[J]. 岩石学报, 2011, 27(12): 3787-3799.
[12]
蒋少涌, 戴宝章, 姜耀辉, 等. 胶东和小秦岭: 两类不同构造环境中的造山型金矿省[J]. 岩石学报, 2009, 25(11): 2727-2738.
[13]
王义天, 叶会寿, 刘俊辰, 等. 小秦岭金矿田三叠纪成矿事件的伸展构造背景: 构造岩的40Ar-39Ar年代学证据[J]. 岩石学报, 2021, 37(8): 2419-2430.
[14]
曾庆栋, 陈仁义, 杨进辉, 等. 辽东地区金矿床类型、成矿特征及找矿潜力[J]. 岩石学报, 2019, 35(7): 1939-1963.
[15]
裴荣富, 熊群尧, 徐善法, 等. 中国金矿床(点)等密度图与成矿远景预测[J]. 地球科学: 中国地质大学学报, 1999, 24(5): 449-454.
[16]
YU X F, SHAN W, XIONG Y X, et al. Deep structural framework and genetic analysis of gold concentration areas in the northwestern Jiaodong Peninsula, China: a new understanding based on high-resolution reflective seismic survey[J]. Acta Geologica Sinica (English Edition), 2018, 92(5): 1823-1840.
[17]
于学峰, 杨德平, 李大鹏, 等. 胶东焦家金矿带3000 m深部成矿特征及其地质意义[J]. 岩石学报, 2019, 35(9): 2893-2910.
[18]
王义文. 中国金矿床成矿时代初探[J]. 四川地质科技情报, 1994, 3(3): 161-168.
[19]
李俊建. 中国金矿床成矿时代的讨论[J]. 地球学报, 1998, 19(2): 215-220.
[20]
陈毓川, 李兆鼐, 毋瑞, 等. 中国金矿床及其成矿规律[M]. 北京: 地质出版社, 2001.
[21]
陈柏林. 论中国金矿床成矿时代特点[J]. 地质地球化学, 2002, 30(2): 66-73.
[22]
杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467.
[23]
秦燕, 王成辉, 王登红, 等. 中国金矿床成矿年代学研究进展[J]. 地球学报, 2023, 44(4): 581-598.
[24]
DENG J, QIU K F, WANG Q F, et al. In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province, eastern China[J]. Economic Geology, 2020, 115(3): 671-685.

Comments

PDF(15257 KB)

Accesses

Citation

Detail

Sections
Recommended

/