
Middle Eocene thrusting deformation along the Anninghe fault and its regional tectonic implication: Insight from K-Ar dating of authigenic illite-bearing fault gouge
Kui TONG, Zhiwu LI, Shugen LIU, UYSAL I.Tonguç, Zejin SHI, Jinxi LI, TODD Andrew, Wenhui WU, Zijian WANG, Shengwu LIU, Ke LI, Tian HUA
Middle Eocene thrusting deformation along the Anninghe fault and its regional tectonic implication: Insight from K-Ar dating of authigenic illite-bearing fault gouge
Deformation characteristics and timing of the fold-and-thrust belt are the key in verifying the geodynamic end-member models of continental lithosphere of the Tibetan Plateau and its periphery. K-Ar dating of authigenic illite from fault gouge provides an effective means in determining the timing of deformation events in the fold-and-thrust belt. The Xianshuihe-Anninghe-Xiaojiang fault is a large-scale sinistral strike-slip fault system accompanying the collision of the Indo-Eurasian Plates and the lateral extrusion of the Tibetan Plateau. The deformation process of the Xianshuihe-Anninghe-Xiaojiang fault system can provide significant insight into how the far-field stress of the Indo-Eurasian collision is transferred eastward. In this study, we focus on the Mianning-Xichang segment of the Anninghe fault. Based on the structural analyses characterizing fault kinematics, we dated authigenic illite from fault gouge to constrain the timing of deformation events along the Anninghe fault. Structural analyses reveal that the Anninghe fault experienced thrusting deformation under the EW-oriented compression. Detailed study of illite clay mineralogy and K-Ar dating of different grain-size fractions of the fault gouge suggest that the components of high-temperature 2M1 illite relative to those of low-temperature 1M/1Md illite polytype gradually decrease with the decreasing K-Ar ages. These results show that different illite K-Ar ages for different grain sizes are due to the mixing of two illite polytypes, represented by detrital 2M1 and authigenic 1M/1Md end members. Illite Age Analysis reveals that the K-Ar age for authigenic 1M/1Md illite is (42.6±9.4) Ma, suggesting that the thrusting deformation along the Anninghe fault occurred in the middle Eocene. Integrated with previously published tectonic, sedimentology, low-temperature thermochronology and paleomagnetism studies, it is suggested that the fold-and-thrust belt in the hinterland of the Tibetan Plateau and its periphery underwent quasi-contemporaneous tectonic compression deformation during the middle Eocene. The dynamic mechanism of this event may be related to the reactivation of the pre-existing tectonic belt caused by the combination of the hard collision of the Indo-Eurasian Plates and intra-continental subduction of the terranes within the Tibetan Plateau. The mid-Eocene thrusting event along the Anninghe fault suggests that the far-field stress from the early stage of the Indo-Eurasian collision has been transferred to the southeastern margin of the Tibetan Plateau.
Anninghe fault / fault gouge / authigenic illite / K-Ar dating / middle Eocene
[1] |
|
[2] |
许志琴, 杨经绥, 李海兵, 等. 印度-亚洲碰撞大地构造[J]. 地质学报, 2011, 85(1): 1-33.
|
[3] |
|
[4] |
李廷栋. 青藏高原隆升的过程和机制[J]. 中国地质科学院院报, 1995(1): 1-9.
|
[5] |
|
[6] |
许志琴, 王勤, 李忠海, 等. 印度-亚洲碰撞: 从挤压到走滑的构造转换[J]. 地质学报, 2016, 90(1): 1-23.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
郑勇, 李海兵, 王世广, 等. 断层泥自生伊利石年龄分析及其在龙门山断裂带的应用[J]. 地球学报, 2019, 40(1): 173-185.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
叶春林. 西藏荣玛乡南新生代逆冲推覆构造变形特征及时代[D]. 北京: 中国地质大学(北京), 2020.
|
[34] |
|
[35] |
张岳桥, 杨农, 孟晖, 等. 四川攀西地区晚新生代构造变形历史与隆升过程初步研究[J]. 中国地质, 2004, 31(1): 23-33.
|
[36] |
李海龙, 张岳桥, 张长厚, 等. 鲜水河断裂带渐新世至早中新世两期变形相关混合岩的锆石U-Pb年代学及其意义[J]. 地学前缘, 2016, 23(2): 222-237.
|
[37] |
白明坤,
|
[38] |
张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学D辑: 地球科学, 2003(B4): 12-20.
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
刘方斌. 青藏高原东南缘新生代剥露历史的热年代学约束: 以临沧花岗岩地区为例[D]. 兰州: 兰州大学, 2021.
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
刘宇平, 陈智梁, 唐文清, 等. 青藏高原东部及周边现时地壳运动[J]. 沉积与特提斯地质, 2003, 23(4): 1-8.
|
[60] |
|
[61] |
王振荣, 张燕, 周贞莲. 安宁河断裂带显微构造及动力学的研究[J]. 成都地质学院学报, 1992, 19(4): 48-54, 125.
|
[62] |
冉勇康, 陈立春, 程建武, 等. 安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J]. 中国科学D辑: 地球科学, 2008, 38(5): 543-554.
|
[63] |
何宏林, 池田安隆. 安宁河断裂带晚第四纪运动特征及模式的讨论[J]. 地震学报, 2007, 29(5): 537-548, 560.
|
[64] |
|
[65] |
|
[66] |
邓宾, 雍自权, 刘树根, 等. 青藏高原东南缘大凉山新生代隆升建造过程: 多封闭系统低温热年代学与热模型限制[J]. 地球物理学报, 2016, 59(6): 2162-2175.
|
[67] |
|
[68] |
张岳桥, 杨农, 陈文, 等. 中国东西部地貌边界带晚新生代构造变形历史与青藏高原东缘隆升过程初步研究[J]. 地学前缘, 2003, 10(4): 599-612.
|
[69] |
陈应涛, 余文鑫, 张欢, 等. 青藏高原东缘安宁河断裂带中—新生代构造变形及其磁组构特征[J]. 西安科技大学学报, 2021, 41(1): 94-103.
|
[70] |
华天, 李金玺, 李智武, 等. 安宁河断裂带新生代构造变形与磁组构特征[J]. 地球学报, 2022, 43(2): 144-156.
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
张有瑜, 刘可禹, 罗修泉. 自生伊利石年代学研究: 理论、方法与实践[M]. 北京: 科学出版社, 2016.
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
廖忠礼, 邓永福, 廖光宇. 四川锦屏地区新生代冲断作用[J]. 大地构造与成矿学, 2003, 27(2): 152-159.
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
/
〈 |
|
〉 |