Geothermal resources exploration and development technology: Current status and development directions

Huanquan SUN, Xiang MAO, Chenbingjie WU, Dianbin GUO, Haitao WANG, Shaochuan SUN, Ying ZHANG, Lu LUO

PDF(4567 KB)
PDF(4567 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1) : 400-411. DOI: 10.13745/j.esf.sf.2023.9.25

Geothermal resources exploration and development technology: Current status and development directions

Author information +
History +

Abstract

Geothermal energy is an important non-carbon-based renewable energy with several advantages such as local availability, deployment stability/reliability, and low carbon emissions. It represents an unique resource for ensuring energy security and promoting green, low-carbon transition. Since the beginning of the 21st century China's geothermal industry has experienced rapid development, making it a world leader in direct geothermal use, particularly in direct utilization of medium and deep geothermal resources for heating. However, as the majority of China's land regions are within tectonic plates and the country lacks medium-high temperature geothermal resources in the energy-intensive regions in the east, the development of geothermal power generation in China has been slow. In this study, the main distribution characteristics and development status of geothermal resources in China are discussed, and the current geothermal exploration, development, and utilization technologies are summarize, which involve exploration techniques based on geothermal genesis models, site selection evaluation techniques, thermal storage description technologies, sustainable development techniques, and key engineering technologies related to “heat extraction without water consumption.” In order to increase the geothermal energy market size amid energy transition, it is necessary to tap into deep geothermal resources with higher quality and broader applications in the future. Recommendations from this study include continuing strengthening basic theoretical research and technical innovation, inventorying China's deep geothermal resources as early as possible, addressing key technology challenges (e.g., high-temperature drilling/completion, complex-structure well, deep thermal storage retrofitting, underground heat exchange, EGS), and promoting synergistic development of “geothermal plus” multisource energy. Efforts should also be made to increase construction of demonstration projects and foster application market development. At the same time, it is essential to establish a sound policy and regulatory system, increase policy support, strengthen management and supervision, and create a favorable environment for the healthy, standardized, and sustainable development of the geothermal industry.

Key words

geothermal energy / geothermal industry / direct utilization / exploration and development techniques / development direction / carbon neutrality

Cite this article

Download Citations
Huanquan SUN , Xiang MAO , Chenbingjie WU , et al . Geothermal resources exploration and development technology: Current status and development directions. Earth Science Frontiers. 2024, 31(1): 400-411 https://doi.org/10.13745/j.esf.sf.2023.9.25

References

[1]
地热能术语: NB/T 10097—2018[S]. 北京: 中国石化出版社, 2018.
[2]
庞忠和, 罗霁, 程远志, 等. 中国深层地热能开采的地质条件评价[J]. 地学前缘, 2020, 27(1): 134-151.
[3]
地热资源地质勘查规范: GB/T 11615—2010[S]. 北京: 中国标准出版社, 2011.
[4]
自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 等. 中国地热能发展报告2018[M]. 北京: 中国石化出版社, 2018.
[5]
PORTER M E, CHRISTIAN H M K. Unlocking the potential of geothermal energy: strategic implications for Iceland, Other Nations and the International Community[C]// Iceland geothermal conference. Reykjavik: International Geothermal Association (IGA), 2016: 21-26.
[6]
ADELE M, ELISA C, MARTINA R G, et al. Geothermal heating and cooling production, 2023 worldwide review[C]// Proceedings world geothermal congress 2023. Beijing: China Petroleum and Chemical Corporation, 2023: 63-68.
[7]
丁仲礼. 全国人民代表大会常务委员会执法检查组关于检查《中华人民共和国可再生能源法》实施情况的报告[J]. 中华人民共和国全国人民代表大会常务委员会公报, 2020(1): 144-151.
[8]
黄尚瑶, 王钧, 汪集旸. 关于地热带分类及地热田模型[J]. 水文地质工程地质, 1983(5): 1-7.
[9]
滕吉文, 张永谦, 阮小敏. 发展可再生能源和新能源与必须深层次思考的几个科学问题: 非化石能源发展的必由之路[J]. 地球物理学进展, 2010, 25(4): 1115-1152.
[10]
何治亮, 冯建赟, 张英, 等. 试论中国地热单元分级分类评价体系[J]. 地学前缘, 2017, 24(3): 168-179.
[11]
蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1): 312-321.
[12]
王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-459, 134.
[13]
王婉丽, 王贵玲, 朱喜, 等. 中国省会城市浅层地热能开发利用条件及潜力评价[J]. 中国地质, 2017, 44(6): 1062-1073.
[14]
张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质, 2019, 46(2): 255-268.
[15]
王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9.
[16]
汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31.
[17]
郑克棪. 中国地热利用: 虽已享誉世界但仍大有可为[J]. 中国电业, 2020(10): 23-25.
[18]
GUO X S, DANG L Q, LIU S L, et al. High-quality development of geothermal industry in China[C]// Proceedings world geothermal congress 2023. Beijing: China Petroleum and Chemical Corporation, 2023: 102-106.
[19]
张英, 冯建赟, 何治亮, 等. 地热系统类型划分与主控因素分析[J]. 地学前缘, 2017, 24(3): 190-198.
[20]
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937.
[21]
PANG Z H, PANG J M, KONG Y L, et al. Large karstic geothermal reservoirs in sedimentary basins in China: genesis, energy potential and optimal exploitation[C]// Proceedings of the world geothermal congress 2015. Melbourne: International Geothermal Association, 2015: 1-5.
[22]
史猛, 康凤新, 张杰, 等. 胶东半岛不同构造单元深部热流分流聚热模式[J]. 地质学报, 2021, 95(5): 1594-1605.
[23]
WANG X W, MAO X, MAO X P, et al. Characteristics and classification of the geothermal gradient in the Beijing-Tianjin-Hebei Plain, China[J]. Mathematical Geosciences, 2020, 52: 783-800.
[24]
庞忠和, 孔彦龙, 庞菊梅, 等. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 2017, 32(11): 1224-1230.
[25]
王贵玲, 张薇, 蔺文静, 等. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 2017, 44(6): 1074-1085.
[26]
任纪舜, 赵磊, 李崇, 等. 中国大地构造研究之思考: 中国地质学家的责任与担当[J]. 中国地质, 2017, 44(1): 33-43.
[27]
任纪舜. 论中国大陆岩石圈构造的基本特征[J]. 中国区域地质, 1991(4): 289-293.
[28]
潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28, 255.
[29]
吴福元, 葛文春, 孙德有, 等. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘, 2003, 10(3): 51-60.
[30]
李江海, 李维波, 周肖贝, 等. 全球沉积盆地结构与构造演化特征: 洲际纬向超长剖面对比研究[J]. 大地构造与成矿学, 2014, 38(1): 1-11.
[31]
BLACKWELL D, RICHARDS M, FRONE Z, et al. Temperature-at-depth maps for the conterminous US and geothermal resource estimates[C]// GRC Transactions. San Diego: GRC, 2011: 346-349.
[32]
李根生, 武晓光, 宋先知, 等. 干热岩地热资源开采技术现状与挑战[J]. 石油科学通报, 2022, 7(3): 343-364.
[33]
US Department of Energy. GeoVision: harnessing the heat beneath our feet[R]. Washington DC: US Department of Energy, 2019.
[34]
FRIDLEIFSSON G Ó, ELDERS W A, ZIERENBERG R A, et al. The Iceland Deep Drilling Project 4.5 km deep well, IDDP-2, in the seawater recharged Reykjanes geothermal field in SW Iceland has successfully reached its supercritical target[J]. Scientific Drilling, 2017, 23: 1-12.
[35]
European Technology and Innovation Platform for Deep Geothermal ETIP-DG. Implementation roadmap on deep geothermal[R]. Brussels: ETIP-DG, 2019.

Comments

PDF(4567 KB)

Accesses

Citation

Detail

Sections
Recommended

/