
Tectono-thermal mechanism and hydrocarbon generation action in the North Yellow Sea Eastern Sub-basin
Jinping LIU, Gaiyun WANG, Xiaoling JIAN, Chuanqing ZHU, Xiaoqiang HU, Xiaoqiang YUAN, Chao WANG
Tectono-thermal mechanism and hydrocarbon generation action in the North Yellow Sea Eastern Sub-basin
The North Yellow Sea Eastern Sub-basin is a typical Meso-Cenozoic small superimposed faulted basin, currently in its early exploration phase. Comprehensive studies on the complex tectonic-thermal evolution in this region are lacking. By integrating vitrinite reflectance (Ro) and apatite fission track (AFT) analysis, the thermal history and geothermal gradient of the Meso-Cenozoic era have been reconstructed in this basin, alongside assessments of erosion thickness and processes. These investigations have enabled an analysis of the thermal evolution history of Middle-Upper Jurassic source rocks. Results indicate that paleo-heat flow peaked at 75-90 mW/m2 during 120-100 Ma, decreased to 60 mW/m2 at 40 Ma, and then rose to 70 mW/m2 at present. Correspondingly, temperatures declined gradually from 100-70 Ma but rapidly dropped during 70-40 Ma, with the geothermal gradient shifting from 34-36 ℃/km to 23 ℃/km before rising to 28 ℃/km. Overall, paleo-geothermal gradient and heat flow were higher before the Late Cretaceous, aligning with the transition from a faulted basin to a depression basin. Intense uplift and erosion occurred during the Late Cretaceous-Eocene, resulting in an erosion thickness of approximately 1.0-1.5 km. Deposition slowed or ceased during 100-90 Ma, with significant uplift occurring during 85-40 Ma, especially rapid during 70-40 Ma. The tectonic-thermal history has influenced hydrocarbon generation, with both Middle and Upper Jurassic source rocks experiencing early hydrocarbon generation during the Late Jurassic-Early Cretaceous. In the central depression, erosion thickness was thinner in the Lower Cretaceous-Eocene, while deposition thickness was thicker in the Oligocene-Quaternary, leading to higher present-day strata temperatures and favoring late hydrocarbon generation. Exploration efforts for potential accumulation should focus on areas surrounding hydrocarbon generation depressions.
Eastern Sub-basin / apatite fission track / vitrinite reflectance / tectonic-thermal history / hydrocarbon generation action
[1] |
邱楠生, 常健, 冯乾乾, 等. 我国中西部盆地深层-超深层烃源岩热演化研究[J]. 地学前缘, 2023, 30(6): 199-212.
|
[2] |
左银辉, 马维民, 邓已寻, 等. 查干凹陷中、新生代热史及烃源岩热演化[J]. 地球科学: 中国地质大学学报, 2013, 38(3): 553-560.
|
[3] |
高堋, 胡圣标, 姜光政, 等. 沉积盆地热历史研究方法的基本原理与进展[J]. 地学前缘, 2017, 24(3): 65-78.
|
[4] |
胡圣标, 张容燕, 罗毓晖, 等. 渤海盆地热历史及构造-热演化特征[J]. 地球物理学报, 1999, 42(6): 748-755.
|
[5] |
任战利, 于强, 崔军平, 等. 鄂尔多斯盆地热演化史及其对油气的控制作用[J]. 地学前缘, 2017, 24(3): 137-148.
|
[6] |
李庶波, 王岳军, 吴世敏. 珠江口盆地中—新生代热隆升格局的磷灰石和锆石裂变径迹反演[J]. 地学前缘, 2018, 25(1): 95-107.
|
[7] |
邱楠生, 左银辉, 常健, 等. 中国东西部典型盆地中—新生代热体制对比[J]. 地学前缘, 2015, 22(1): 157-168.
|
[8] |
何将启, 丁汝鑫, 梁世友, 等. 基于磷灰石裂变径迹约束的北黄海盆地热演化研究[J]. 地球物理学报, 2014, 57(10): 3347-3353.
|
[9] |
刘金萍, 王改云, 杜民, 等. 北黄海盆地东部坳陷中生界烃源岩特征[J]. 中国海上油气, 2013, 25(4): 12-16.
|
[10] |
|
[11] |
|
[12] |
刘金萍, 王嘹亮, 简晓玲, 等. 北黄海盆地中生界原油特征及油源初探[J]. 新疆石油地质, 2013, 34(5): 515-518.
|
[13] |
王改云, 刘金萍, 王后金, 等. 北黄海盆地东部坳陷中生界沉积特征及演化[J]. 沉积学报, 2015, 33(3): 561-567.
|
[14] |
杜民, 王后金, 王改云, 等. 北黄海盆地东部坳陷中新生代的叠合盆地特征及其成因[J]. 海洋地质与第四纪地质, 2016, 36(5): 85-96.
|
[15] |
李文勇, 李东旭, 夏斌, 等. 北黄海盆地构造演化特征分析[J]. 现代地质, 2006, 20(2): 268-276.
|
[16] |
李文勇, 曾祥辉, 黄家坚. 北黄海中、新生代盆地: 残留盆地还是叠合盆地?[J]. 地质学报, 2009, 83(9): 1269-1275.
|
[17] |
|
[18] |
邱楠生, 何丽娟, 常健, 等. 沉积盆地热历史重建研究进展与挑战[J]. 石油实验地质, 2020, 42(5): 790-802.
|
[19] |
任战利. 中国北方沉积盆地构造热演化史研究[M]. 北京: 石油工业出版社, 1999.
|
[20] |
邱楠生, 胡胜标, 何丽娟. 沉积盆地热体制研究的理论与应用[M]. 北京: 石油工业出版社, 2004.
|
[21] |
吕希学. 渤海湾盆地临清坳陷东部热演化历史和成烃史[J]. 地质科学, 2006, 41(4): 676-687.
|
[22] |
邱楠生, 苏向光, 李兆影, 等. 济阳坳陷新生代构造-热演化历史研究[J]. 地球物理学报, 2006, 49(4): 1127-1135.
|
[23] |
任战利, 崔军平, 祁凯, 等. 叠合盆地深层、超深层热演化史恢复理论及方法研究新进展[J]. 西北大学学报(自然科学版), 2022, 52(6): 910-929.
|
[24] |
丁超, 陈刚, 李振华, 等. 鄂尔多斯盆地东北部构造热演化史的磷灰石裂变径迹分析[J]. 现代地质, 2011, 25(3): 581-588, 616.
|
[25] |
吕钊, 许展, 庞建章, 等. 内蒙古白乃庙铜金矿区侵入岩锆石和磷灰石裂变径迹年代学及其地质意义[J]. 地学前缘, 2023, 30(3): 386-398.
|
[26] |
|
[27] |
|
[28] |
刘金萍, 王改云, 王嘹亮, 等. 北黄海东部次盆地油气成藏主控因素[J]. 石油与天然气地质, 2015, 36(6): 888-896.
|
[29] |
胡圣标, 张容燕, 周礼成. 油气盆地地热史恢复方法[J]. 勘探家, 1998, 3(4): 52-54.
|
[30] |
佟彦明, 朱光辉. 利用镜质体反射率恢复地层剥蚀量的几个重要问题[J]. 石油天然气学报, 2006, 28(3): 197-199.
|
[31] |
余武, 沈传波, 杨超群. 秭归盆地中新生代构造-热演化的裂变径迹约束[J]. 地学前缘, 2017, 24(3): 116-126.
|
[32] |
朱传庆, 邱楠生, 曹环宇, 等. 四川盆地东部构造-热演化: 来自镜质体反射率和磷灰石裂变径迹的约束[J]. 地学前缘, 2017, 24(3): 94-104.
|
[33] |
|
[34] |
|
[35] |
罗梦, 朱文斌, 郑碧海, 等. 库车盆地中新生代构造演化: 磷灰石裂变径迹证据[J]. 地球科学: 中国地质大学学报, 2012, 37(5): 893-902.
|
[36] |
任战利, 崔军平, 郭科, 等. 鄂尔多斯盆地渭北隆起抬升期次及过程的裂变径迹分析[J]. 科学通报, 2015, 60(14): 1298-1309.
|
[37] |
|
[38] |
王嘉琦, 李宗星, 刘奎. 柴达木盆地东部燕山期剥蚀量恢复: 来自地球物理和低温热年代学的证据[J]. 地学前缘, 2022, 29(4): 371-384.
|
[39] |
田云涛, 朱传庆, 徐明, 等. 晚白垩世以来川东北地区的剥蚀历史: 多类低温热年代学数据综合剖面的制约[J]. 地球物理学报, 2011, 54(3): 807-816.
|
[40] |
|
[41] |
|
[42] |
任战利, 刘池阳, 张小会, 等. 酒泉盆地群热演化史恢复及其对比研究[J]. 地球物理学报, 2000, 43(5): 635-645.
|
[43] |
龚浩, 朱传庆, 徐明, 等. 四川盆地西北地区热流史及烃源岩演化[J]. 地球物理学进展, 2010, 25(3): 1031-1036.
|
[44] |
崔军平, 任战利, 李金翔, 等. 海拉尔盆地呼伦湖凹陷热演化史恢复[J]. 石油与天然气地质, 2015, 36(1): 35-42.
|
/
〈 |
|
〉 |