Late Cretaceous transgression in the Muglad Basin of Central Africa and its implication for oil and gas exploration

Hong XIAO, Meijun LI, Dingsheng CHENG, Jiguo LIU, Jin LI, Xiangrong XING

PDF(3337 KB)
PDF(3337 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3) : 352-359. DOI: 10.13745/j.esf.sf.2023.6.19

Late Cretaceous transgression in the Muglad Basin of Central Africa and its implication for oil and gas exploration

Author information +
History +

Abstract

The global transgression during the Late Cretaceous was previously believed to have primarily affected the northern African continent, with the Muglad Basin in the central African region thought to have been unaffected by this event. Within the basin, only one set of organic-rich source rock was known to have formed, namely the lacustrine mudstone of the Lower Cretaceous Abu Gabra Formation. This study collected mudstone samples from both the Upper Cretaceous Darfur Group and the Lower Cretaceous Abu Gabra Formation. Analysis revealed that the mudstones from the Upper Cretaceous Darfur Group exhibit a distinct distribution of dinosteranes and tricyclic terpanes compared to the lacustrine source rocks of the Lower Cretaceous Abu Gabra Formation, showing an abundance of dinosteranes and C23 tricyclic terpanes, which are likely products of transgression. This study suggests that the mudstones from the Upper Cretaceous Darfur Group were influenced by seawater from the Neo-Tethys Ocean, indicating that the global transgression in the Late Cretaceous extended into the Muglad Basin in Central Africa. Furthermore, the presence of organic-rich marine mudstones in the Darfur Group suggests that the basin not only accumulated the lacustrine source rock of the Abu Gabra Formation but also potentially deposited a set of marine source rock. The discovery of marine oil in the K-1 well further confirms the hydrocarbon generation potential of marine source rock in the Darfur Group, pointing to new prospects for petroleum exploration in the Muglad Basin in the future.

Key words

transgression / Late Cretaceous / molecular fossils / dinosteranes / tricyclic terpanes / marine oil

Cite this article

Download Citations
Hong XIAO , Meijun LI , Dingsheng CHENG , et al . Late Cretaceous transgression in the Muglad Basin of Central Africa and its implication for oil and gas exploration. Earth Science Frontiers. 2024, 31(3): 352-359 https://doi.org/10.13745/j.esf.sf.2023.6.19

References

[1]
FAIRHEAD J D. Mesozoic plate tectonic reconstructions of the central South Atlantic Ocean: the role of the West and Central African rift system[J]. Tectonophysics, 1988, 155(1/2/3/4): 181-191.
[2]
SCHULL T J. Rift basins of Interior Sudan: petroleum exploration and discovery[J]. American Association of Petroleum Geologists Bulletin, 1988, 72(10): 1128-1142.
[3]
AN K X, CHEN H L, LIN X B, et al. Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level[J]. Frontiers of Earth Science, 2017, 11(4): 740-750.
[4]
GENIK G J. Petroleum geology of rift basins in Niger, Chad, and Central African Republic[J]. American Association of Petroleum Geologists Bulletin, 1993, 77(8): 1405-1434.
[5]
程顶胜, 窦立荣, 张光亚, 等. 中西非裂谷盆地白垩系两类优质烃源岩发育模式[J]. 地质学报, 2020, 94(11): 3449-3460.
[6]
童晓光, 窦立荣, 田作基, 等. 苏丹穆格莱特盆地的地质模式和成藏模式[J]. 石油学报, 2004, 25(1): 19-24.
[7]
DOU L R, CHENG D S, ZHI L, et al. Petroleum geology of the Fula Sub-basin, Muglad Basin, Sudan[J]. Journal of Petroleum Geology, 2013, 36(1): 43-59.
[8]
MAKEEN Y M, WAN H A, HAKIMI M H, et al. Geochemical characteristics of crude oils, their asphaltene and related organic matter source inputs from Fula oilfields in the Muglad Basin, Sudan[J]. Marine and Petroleum Geology, 2015, 67: 816-828.
[9]
MAKEEN Y M, ABDULLAH W H, HAKIMI M H, et al. Source rock characteristics of the Lower Cretaceous Abu Gabra Formation in the Muglad Basin, Sudan, and its relevance to oil generation studies[J]. Marine and Petroleum Geology, 2015, 59: 505-516.
[10]
XIAO H, LI M J, LIU J G, et al. Oil-oil and oil-source rock correlations in the Muglad Basin, Sudan and South Sudan: new insights from molecular markers analyses[J]. Marine and Petroleum Geology, 2019, 103: 351-365.
[11]
YASSIN M A, HARIRI M M, ABDULLATIF O M, et al. Evolution history of transtensional pull-apart, oblique rift basin and its implication on hydrocarbon exploration: a case study from Sufyan Sub-basin, Muglad Basin, Sudan[J]. Marine and Petroleum Geology, 2017, 79: 282-299.
[12]
MCHARGUE T R, HEIDRICK T L, LIVINGSTON J E. Tectonostratigraphic development of the Interior Sudan rifts, Central Africa[J]. Tectonophysics, 1992, 213(1/2): 187-202.
[13]
窦立荣, 潘校华, 田作基, 等. 苏丹裂谷盆地油气藏的形成与分布: 兼与中国东部裂谷盆地对比分析[J]. 石油勘探与开发, 2006, 33(3): 255-261.
[14]
汪望泉, 窦立荣, 张志伟, 等. 苏丹福拉凹陷转换带特征及其与油气的关系[J]. 石油勘探与开发, 2007, 34(1): 124-126.
[15]
吴冬, 朱筱敏, 李志, 等. 苏丹Muglad盆地Fula凹陷白垩纪断陷期沉积模式[J]. 石油勘探与开发, 2015, 42(3): 319-327.
[16]
范乐元, 吴嘉鹏, 刁宛, 等. 断陷湖盆浅水三角洲沉积特征: 以Muglad盆地Unity凹陷Aradeiba组为例[J]. 地学前缘, 2021, 28(1): 155-166.
[17]
冉怀江, 范乐元, 孔庆东, 等. 苏丹Muglad盆地中南部西斜坡沉积层序及有利地层圈闭预测[J]. 地学前缘, 2021, 28(1): 131-140.
[18]
刘淑文, 李志, 潘校华, 等. 苏丹富油气凹陷岩性油气藏区带评价探讨: 以Muglad盆地Fula凹陷为例[J]. 中国石油勘探, 2017, 22(2): 90-98.
[19]
窦立荣, 程顶胜, 李志. 苏丹Muglad盆地FN油田沥青垫的确认及成因分析[J]. 地球化学, 2004, 33(3): 309-316.
[20]
窦立荣, 张志伟, 程顶胜. 苏丹Muglad盆地区域盖层对油藏特征的控制作用[J]. 石油学报, 2006, 27(3): 22-26.
[21]
侯读杰, 王铁冠. 陆相湖盆沉积物和原油中的甲藻甾烷[J]. 科学通报, 1995, 40(4): 333-335.
[22]
侯读杰, 王铁冠, 张一伟, 等. 中国东部第三系陆相沉积中的甲藻甾烷: 海侵指相的标志物?[J]. 地质论评, 1997, 43(5): 524-528.
[23]
SUMMONS R E, VOLKMAN J K, BOREHAM C J. Dinosterane and other steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum[J]. Geochimica et Cosmochimica Acta, 1987, 51(11): 3075-3082.
[24]
GOODWIN N S, MANN A L, PATIENCE R L. Structure and significance of C30 4-methyl steranes in lacustrine shales and oils[J]. Organic Geochemistry, 1988, 12(5): 495-506.
[25]
HOU D J, LI M W, HUANG Q H. Marine transgressional events in the gigantic freshwater lake Songliao: paleontological and geochemical evidence[J]. Organic Geochemistry, 1987, 31(7/8): 763-768.
[26]
DE GRANDE S M B, AQUINO NETO F R, MELLO M R. Extended tricyclic terpanes in sediments and petroleums[J]. Organic Geochemistry, 1993, 20(7): 1039-1047.
[27]
MOLDOWAN J M, SEIFERT W K, GALLEGOS E J. Identification of an extended series of tricyclic terpanes in petroleum[J]. Geochimica et Cosmochimica Acta, 1983, 47(8): 1531-1534.
[28]
SUMMONS R E, THOMAS J, MAXWELL J R, et al. Secular and environmental constraints on the occurrence of dinosterane in sediments[J]. Geochimica et Cosmochimica Acta, 1992, 56(6): 2437-2444.
[29]
MOLDOWAN J M, SEIFERT W K, GALLEGOS E J. Relationship between petroleum composition and depositional environment of petroleum source rock[J]. American Association of Petroleum Geologists Bulletin, 1985, 69(8): 1255-1268.
[30]
GEBBAYIN I M O F A, ZHONG N N, LUO Q Y, et al. New insights on Muglad’s Cretaceous source rocks: a paleo-geographic review & organic geochemical characterization, Muglad basin, Sudan[C] //IOP conference series: Earth and environmental science. Global Scientific Research Association, Wuhan 2019: 012030.
[31]
OURISSON G, ALBRECHT P, ROHMER M. Predictive microbial biochemistry: from molecular fossils to procaryotic membranes[J]. Trends Biochemical Sciences, 1982, 7(7): 236-239.
[32]
AQUINO NETO F R, TRENDEL J M, RESTLÉ A, et al. Occurrence and formation of tricyclic terpanes in sediments and petroleums[C]//BJORØY M, ALBRECHT P, CORNFORD C, et al. Advances in organic geochemistry 1981. Chichester: Wiley, 1983: 659-667.
[33]
SIMONEIT B R T, LEIF R N, AQUINO NETO F R, et al. On the presence of tricyclic terpane hydrocarbons in permian tasmanite algae[J]. Naturwissenschaften, 1990, 77(8): 380-383.
[34]
SIMONEIT B R T, SCHOELL M, DIAS R F, et al. Unusual carbon isotope compositions of biomarker hydrocarbons in a Permian tasmanite[J]. Geochimica et Cosmochimica Acta, 1993, 57(17): 4205-4211.
[35]
肖洪, 李美俊, 杨哲, 等. 不同环境烃源岩和原油中C19-C23三环萜烷的分布特征及地球化学意义[J]. 地球化学, 2019, 48(2): 161-170.
[36]
TAO S Z, WANG C Y, DU J G, et al. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China[J]. Marine and Petroleum Geology, 2015, 67: 460-467.
[37]
陈哲龙, 柳广弟, 卫延召, 等. 准噶尔盆地玛湖凹陷二叠系烃源岩三环萜烷分布样式及影响因素[J]. 石油与天然气地质, 2017, 38(2): 311-322.
[38]
朱扬明. 塔里木盆地陆相原油的地球化学特征[J]. 沉积学报, 1997, 15(2): 26-30.
[39]
EKWEOZOR C, STRAUSZ O. Tricyclic terpanes in the Athabasca oil sands: Their geochemistry[C]//BJORØY M, ALBRECHT P, CORNFORD C, et al. Advances in organic geochemistry 1981. Chichester: Wiley, 1983: 746-766.
[40]
ZUMBERGE J E. Prediction of source rock characteristics based on terpane biomarkers in crude oils: a multivariate statistical approach[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1625-1637.
[41]
朱扬明, 梅博文, 金迪威. 塔里木盆地中生界煤层的地球化学特征[J]. 新疆石油地质, 1998, 19(1): 3-5.
[42]
XIAO H, WANG T G, LI M J, et al. Geochemical characteristics of Cretaceous Yogou Formation source rocks and oil-source correlation within a sequence stratigraphic framework in the Termit Basin, Niger[J]. Journal of Petroleum Science and Engineering, 2019, 172: 362-372.

Comments

PDF(3337 KB)

Accesses

Citation

Detail

Sections
Recommended

/