Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation

Rubiao CHEN, Yuman WANG, Zhengliang HUANG, Weiling LI, Wei YAN, Feng LIANG, Wei GUO

PDF(16069 KB)
PDF(16069 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5) : 46-60. DOI: 10.13745/j.esf.sf.2023.6.14

Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation

Author information +
History +

Abstract

The Ordovician Wulalike Formation in the northwestern margin of the Ordos Basin is a new prospect for exploring shale gas in the North China plate. Its accumulation conditions and enrichment characteristics are quite different from that of marine shale gas fields in South China. Based on geological data such as drilling cores, logging, laboratory analysis and testing, focusing on the fracture characteristics of the Wulalike Formation, this article explores the accumulation model of marine shale gas in the northwestern margin and obtain four conclusions: (1) The Wulalike Formation, under the control of various sedimentary microfacies, develops siliceous shale, calcareous-siliceous and argillaceous-siliceous mixed shale, localized carbonate rocks (mainly brecciated limestone and marl) and calcareous shale, with large variations in lithofacies combinations in different blocks. However, the lower interval is generally rich in siliceous and exhibits similar brittleness to the lower interval of the Longmaxi Formation, which is beneficial for reservoir fracturing in the foreland thrust belt distribution zone. (2) The Wulalike Formation develops two generations of fractures: high-angle filled fractures and low-angle bedding fractures. Whilst the predominant type is the open bedding microfractures, which is more developed in the southern block compared to the northern block. (3) The lower interval of the Wulalike Formation generally has a total porosity between 2.46%-7.08%, similar to the Longmaxi Formation in the Sichuan basin, with matrix porosity accounting for 34.0%-90.0% (average 61.1%) and fracture porosity 10.0%-66.0% (average 38.9%). (4) Natural gas is mainly stored as free gas (accounting for over 64%), where primary and secondary intralayer migration occurs in inorganic pores and bedding fracture system. According to comprehensive analysis, the Majiatan-Shanghaimiao exploration area is mainly a fractured shale gas accumulation area controlled by structures. The fracture development period is synchronized with the peak gas generation period, which is conducive to the efficient accumulation of natural gas in the Wulalike Formation. The Tiekesumiao Block is a mixed shale gas reservoir.

Key words

Ordos Basin / northwestern margin / Ordovician / Wulalike Formation / fracture porosity / fractured shale gas accumulation

Cite this article

Download Citations
Rubiao CHEN , Yuman WANG , Zhengliang HUANG , et al . Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation. Earth Science Frontiers. 2024, 31(5): 46-60 https://doi.org/10.13745/j.esf.sf.2023.6.14

References

[1]
付锁堂, 付金华, 席胜利, 等. 鄂尔多斯盆地奥陶系海相页岩气地质特征及勘探前景[J]. 中国石油勘探, 2021, 26(2): 33-44.
[2]
席胜利, 刘新社, 黄正良, 等. 鄂尔多斯盆地中奥陶统乌拉力克组页岩油气富集条件及勘探方向[J]. 天然气工业, 2023, 43(3): 12-22.
[3]
席胜利, 莫午零, 刘新社, 等. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力: 以忠平1井为例[J]. 天然气地球科学, 2021, 32(8): 1235-1246.
[4]
吴东旭, 吴兴宁, 李程善, 等. 鄂尔多斯盆地西部奥陶系乌拉力克组烃源岩沉积模式及生烃潜力[J]. 海相油气地质, 2021, 26(2): 123-130.
[5]
张月巧, 郭彦如, 侯伟, 等. 鄂尔多斯盆地西南缘中上奥陶统烃源岩特征及勘探潜力[J]. 天然气地球科学, 2013, 24(5): 894-904.
[6]
ZAGORSKI W A, BOWMAN D C, EMERY M, WRIGHTSTONE G. An overview of some key factors controlling well productivity in core areas of the Appalachian Basin Marcellus shale play[J/OL]. ( 2011-11-01) [2015-06-01]. http:www.searchanddiscovery.com/pdfz/documents/2011/110147zagorski/ndx_zagorski.pdf.html.
[7]
GILLESPIE P, VAN HAGEN J, WESSELS S, et al. Hierarchical kink band development in the Appalachian Plateau decollement sheet[J]. AAPG Bulletin, 2015, 99(1): 51-76.
[8]
JACOBI D, BREIG J, LECOMPTE B, et al. Effective geochemical and geomechanical characterization of shale gas reservoirs from the wellbore environment: caney and the Woodford shale[C]// SPE Annual Technical Conference and Exhibition, New Orleans, 2009: SPE124231.
[9]
HAMMES U, HAMLIN H S, EWING T E. Geologic analysis of the Upper Jurassic Haynesville shale in East Texas and West Louisiana[J]. AAPG Bulletin, 2011, 95(10): 1643-1666.
[10]
LECOMPTE B, FRANQUET J A, JACOBI D. Evaluation of haynesville shale vertical well completions with a mineralogy based approach to reservoir geomechanics[C]// SPE Annual Technical Conference and Exhibition, New Orleans, 2009: SPE124227.
[11]
何自新. 鄂尔多斯盆地演化与油气[M]. 北京: 石油工业出版社, 2003.
[12]
王玉满, 王宏坤, 张晨晨, 等. 四川盆地南部深层五峰组—龙马溪组裂缝孔隙评价[J]. 石油勘探与开发, 2017, 44(4): 531-539.
[13]
王玉满, 王淑芳, 董大忠, 等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 2016, 23(1): 119-133.
[14]
王玉满, 周尚文, 黄正良, 等. 鄂尔多斯盆地西北缘奥陶系乌拉力克组裂缝孔隙表征[J]. 天然气地球科学, 2023, 34(7): 1146-1162.
[15]
丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220.
[16]
丁文龙, 姚佳利, 何建华, 等. 非常规油气储层裂缝识别方法与表征[M]. 北京: 地质出版社, 2015.
[17]
塞拉. 测井资料地质解释[M]. 肖义越, 译. 北京: 石油工业出版社, 1992.
[18]
王玉满, 李新景, 董大忠, 等. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602-1610.
[19]
邹才能, 陶士振, 侯连华, 等. 非常规油气地质学[M]. 北京: 地质出版社, 2014.
[20]
邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701.
[21]
任战利, 于强, 崔军平, 等. 鄂尔多斯盆地热演化史及其对油气的控制作用[J]. 地学前缘, 2017, 24(3): 137-148.

Comments

PDF(16069 KB)

Accesses

Citation

Detail

Sections
Recommended

/