
Analysis and discrimination of tectonic settings based on stacking quantum neural networks
Jiawen ZHANG, Mingchao LI, Shuai HAN, Jingyi ZHANG
Analysis and discrimination of tectonic settings based on stacking quantum neural networks
Quantum geoscience represents a cutting-edge interdisciplinary field that leverages quantum computing and quantum machine learning algorithms to revolutionize the analysis of geological data. Among these advancements, the quantum neural network stands out for its efficiency and accuracy in processing complex multi-source data. This study focuses on addressing the challenge of discriminating tectonic settings, enhancing the quantum neural network (S-QNN) with an ensemble strategy to differentiate between basalt, gabbro, and spinel settings. Comparative analyses are conducted with four traditional algorithms (SVM, RF, KNN, NB), artificial neural network (ANN), and traditional quantum neural network (QNN). Results demonstrate that the S-QNN model outperforms the optimal traditional algorithm by 5.67%, 6.19%, and 13.34% in the respective cases, and surpasses the QNN by 3.11%, 4.99%, and 3.84%. The S-QNN model exhibits robustness and versatility, highlighting its superiority in data processing. This study underscores the potential of quantum machine learning algorithms in geoscience research, showcasing the advantages of S-QNN and paving the way for innovative integration of quantum science and geoscience.
quantum geoscience / tectonic settings discrimination / rock and mineral / geochemistry / stack integration algorithm / stacking quantum neural network (S-QNN)
[1] |
张旗, 朱月琴, 焦守涛. 论传统研究与大数据研究的关系(代序)[J]. 地质通报, 2019, 38(12): 1939-1942.
|
[2] |
董少春, 齐浩, 胡欢. 地球科学大数据的现状与发展[J]. 科学技术与工程, 2019, 19(20): 1-11.
|
[3] |
罗建民, 张旗. 大数据开创地学研究新途径: 查明相关关系, 增强研究可行性[J]. 地学前缘, 2019, 26(4): 6-12.
|
[4] |
冯军, 张琪, 罗建民. 深度挖掘数据潜在价值提高找矿靶区定量优选精度[J]. 地学前缘, 2022, 29(4): 403-411.
|
[5] |
周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展: 大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2): 255-263.
|
[6] |
刘睿, 左蕾, 张鹏, 等. 纳米地质学: 量子科学走进地质学的桥梁[J]. 地学前缘, 2023, 30(3): 308-312.
|
[7] |
张旗, 焦守涛, 李明超, 等. 量子纠缠技术在地质学上应用的可能性[J]. 地学前缘, 2019, 26(4): 159-169.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
王良玉, 张明林, 祝洪涛, 等. 人工神经网络及其在地学中的应用综述[J]. 世界核地质科学, 2021, 38(1): 15-26.
|
[21] |
吕颜轩, 高庆, 吕金虎, 等. 面向近期量子处理器的量子神经网络研究进展[J]. 中国科学: 技术科学, 2022, 52(4): 547-564.
|
[22] |
高骏, 何俊佳. 量子遗传神经网络在变压器油中溶解气体分析中的应用[J]. 中国电机工程学报, 2010, 30(30): 121-127.
|
[23] |
|
[24] |
|
[25] |
|
[26] |
郭知鑫, 杨永太, 任祎, 等. 二连盆地吉尔嘎朗图凹陷南部基底花岗岩形成演化及其大地构造背景研究[J]. 地学前缘, 2023, 30(2): 259-271.
|
[27] |
|
[28] |
李曙光. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J]. 岩石学报, 1993, 9(2): 146-157.
|
[29] |
张旗. 如何正确使用玄武岩判别图[J]. 岩石学报, 1990, 6(2): 87-94.
|
[30] |
|
[31] |
周永章, 张良均, 张澳多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018.
|
[32] |
周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573, 777.
|
[33] |
韩帅, 李明超, 刘承照, 等. 基于玄武岩大数据的大地构造环境智能挖掘判别与分析[J]. 岩石学报, 2018, 34(11): 3207-3216.
|
[34] |
焦守涛, 周永章, 张旗, 等. 基于GEOROC数据库的全球辉长岩大数据的大地构造环境智能判别研究[J]. 岩石学报, 2018, 34(11): 3189-3194.
|
[35] |
|
[36] |
|
[37] |
|
[38] |
朱紫怡, 周飞, 王瑀, 等. 基于机器学习的锆石成因分类研究[J]. 地学前缘, 2022, 29(5): 464-475.
|
[39] |
葛粲, 汪方跃, 顾海欧, 等. 基于卷积神经网络和火山岩大数据的构造源区判别[J]. 地学前缘, 2019, 26(4): 22-32.
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
/
〈 |
|
〉 |