Pollution characteristics, potential ecological risks and sources of heavy metal pollution in lake sediments in Huoqiu County

Hai LIU, Wei WEI, Yang SONG, Yang PAN, Yingchun LI

PDF(3329 KB)
PDF(3329 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3) : 420-431. DOI: 10.13745/j.esf.sf.2023.2.77

Pollution characteristics, potential ecological risks and sources of heavy metal pollution in lake sediments in Huoqiu County

Author information +
History +

Abstract

The contents of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in surface sediments of Chengxi Lake and Chengdong Lake were measured To understand the pollution characteristics, spatial distribution, potential sources, and ecological risks of heavy metals in surface sediments of Chengxi Lake and Chengdong Lake in Huoqiu County. The soil accumulation index, pollution load index, potential ecological hazard index, and sediment quality reference method were used to evaluate the pollution degree and potential ecological hazard of heavy metals. The sources of heavy metals were analyzed by correlation analysis, cluster analysis, and principal component analysis. The results showed that except for Cd, Hg, Pb in Chengdong Lake and Hg in Chengxi Lake, the average values of other elements exceeded the background values, and the content of heavy metals showed significant spatial variability, decreasing from north to south. The soil accumulation index indicates that Ni and Zn in sediments of Chengxi Lake are in a state of unpolluted to moderate pollution. The pollution load index indicates that the sediments of Chengxi Lake are in a state of moderate pollution, and the sediments of Chengxi Lake and Chengdong Lake are in a state of mild ecological risk. The results of heavy metal traceability analysis show that Cr, Zn, Ni, and Cu in the sediments of Chengxi Lake and Chengdong Lake are mainly from the parent material, mineral exploitation, and aquaculture, while As, Pb, Hg, and Cd are mainly from agricultural pollution and domestic sewage. The results can provide a scientific basis for the prevention and control of heavy metal pollution in Chengxi Lake and Chengdong Lake.

Key words

Chengxi Lake / Chengdong Lake / surface sediments / heavy metal / pollution assessment / potential ecological risks

Cite this article

Download Citations
Hai LIU , Wei WEI , Yang SONG , et al . Pollution characteristics, potential ecological risks and sources of heavy metal pollution in lake sediments in Huoqiu County. Earth Science Frontiers. 2024, 31(3): 420-431 https://doi.org/10.13745/j.esf.sf.2023.2.77

References

[1]
王亚平, 黄廷林, 周子振, 等. 金盆水库表层沉积物中营养盐分布特征与污染评价[J]. 环境化学, 2017, 36(3): 659-665.
[2]
LI Y, GAO B, XU D Y, et al. Hydrodynamic impact on trace metals in sediments in the cascade reservoirs, North China[J]. Science of the Total Environment, 2020, 716: 136914. DOI: 10.1016/j.scitotenv.2020.136914.
[3]
吴文星, 李开明, 汪光, 等. 沉积物重金属污染评价方法比较—以潭江为例[J]. 环境科学与技术, 2012, 35(9): 143-149.
[4]
曹伟, 张雷, 秦延文, 等. 云蒙湖表层沉积物重金属分布特征及风险评价[J]. 地学前缘, 2021, 28(5): 448-455.
[5]
LI C, SONG C W, YIN Y Y, et al. Spatial distribution and risk assessment of heavy metals in sediments of Shuangtaizi estuary China[J]. Marine Pollution Bulletin, 2015, 98(1/2): 358-364.
[6]
HU B Q, LI G G, LI J, et al. Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments of the southern Bohai Bay, China[J]. Environmental Science and Pollution Research, 2013, 20(6): 4099-4110.
[7]
PHILLIPS D P, HUMAN LR D, ADAMS J B. Wetland plants as indicators of heavy metal contamination[J]. Marine Pollution Bulletin, 2015, 92(1/2): 227-232.
[8]
LI R Z, SHU K, LUO Y Y, et al. Assessment of heavy metal pollution in estuarine surface sediments of Tangxi River in Chaohu Lake Basin[J]. Chinese Geographical Science, 2010, 20(1): 9-17. DOI: 10.1007/s11769-010-0009-0.
[9]
江涛, 林伟稳, 曹英杰, 等. 梅江流域清凉山水库沉积物重金属污染、 生态风险评价及来源解析[J]. 环境科学, 2020, 41(12): 5410-5418.
[10]
CHEN J G, WANG J F, GUO J Y, et al. Eco-environment of reservoirs in China: characteristics and research prospects[J]. Progress in Physical Geography: Earth and Environment, 2018, 42(2): 185-201. DOI: 10.1177/0309133317751844.
[11]
李冰, 王亚, 郑钊, 等. 丹江口水库调水前后表层沉积物营养盐和重金属时空变化[J]. 环境科学, 2018, 39(8): 3591-3600.
[12]
赵晓亮, 李响, 卢洪斌, 等. 东江湖表层沉积物重金属污染特征与潜在生态风险评价[J]. 环境科学, 2022, 43(6): 3048-3057.
[13]
张雅然, 车霏霏, 付正辉, 等. 青海湖沉积物重金属分布及其潜在生态风险分析[J]. 环境科学, 2022, 43(6): 3037-3047.
[14]
李星谕, 李朋, 苏业旺, 等. 汤逊湖表层沉积物重金属污染与潜在生态风险评价[J]. 环境科学, 2022, 43(2): 859-866.
[15]
MYLLER G. Index of geoaccumulation in sediments of the Rhine river[J]. GeoJournal, 1969, 2(3): 108-118.
[16]
HÄKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. DOI: 10.1016/0043-1354(80)90143-8.
[17]
HUANG K M, LIN S. Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan[J]. Chemosphere, 2003, 53(9): 1113-1121. DOI: 10.1016/S0045-6535(03)00592-7.
[18]
张鑫, 周涛发, 杨西飞, 等. 河流沉积物重金属污染评价方法比较研究[J]. 合肥工业大学学报(自然科学版), 2005, 28(11): 1419-1423.
[19]
PENG J F, SONG Y H, YUAN P, et al. The remediation of heavy metals contaminated sediment[J]. Journal of Hazardous Materials, 2009, 161(2/3): 633-640.
[20]
陈兴仁, 陈富荣, 贾十军, 等. 安徽省江淮流域土壤地球化学基准值与背景值研究[J]. 中国地质, 2012, 39(2): 302-310.
[21]
TOMLINSON D L, WIILSON J G, HARRIS C R, et al. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index[J]. Helgolander Meeresuntersuchungen, 1980, 33(1/2/3/4): 566-575. DOI: 10.1007/BF02414780.
[22]
张杰, 郭西亚, 曾野, 等. 太湖流域河流沉积物重金属分布及污染评估[J]. 环境科学, 2019, 40(5): 2202-2210.
[23]
徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115.
[24]
MACDONALD D D, INGERSOLL C G, BERGER T A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems[J]. Archives of Environmental Contamination and Toxicology, 2000, 39(1): 20-31.
[25]
黎静, 孙志高, 孙万龙, 等. 黄河尾闾河段和河口区沉积物中重金属污染及潜在生态毒性风险评价[J]. 湿地科学, 2018, 16(3):407-416.
[26]
PEDRRSEN F, BJØRNESTAD E, ANDERSEN H V, et al. Characterization of sediments from Copenhagen Harbour by use of biotests[J]. Water Science and Technology, 1998, 37(6/7): 233-240. DOI:10.1016/S0273-1223(98)00203-0.
[27]
庞阔, 李敏, 刘璐, 等. 基于蒙特卡洛模拟与PMF模型的黄河流域沉积物重金属污染评价及源解析[J]. 环境科学, 2022, 43(8): 4008-4017.
[28]
NIU Y, JIANG X, WANG K, et al. Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China[J]. Science of the Total Environment, 2020, 700: 134509. DOI:10.1016/j.scitotenv.2019.134509.
[29]
WANG L F, YANG L Y, KONG L H, et al. Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of Nansi Lake, China[J]. Journal of Geochemical Exploration, 2014, 140: 87-95. DOI:10.1016/j.gexplo.2014.02.008.
[30]
杨辉, 陈国光, 刘红樱, 等. 长江下游主要湖泊沉积物重金属污染及潜在生态风险评价[J]. 地球与环境, 2013, 41(2):160-165.
[31]
郭西亚, 高敏, 张杰, 等. 阳澄湖沉积物重金属空间分布及生物毒害特征[J]. 中国环境科学, 2019, 39(2): 802-811.
[32]
祖云霞, 王智源, 严晗璐, 等. 典型养殖型湖泊沉积物污染风险评价及来源解析[J]. 环境科学学报, 2022, 42(10): 362-373.
[33]
LIU Y Z, ENGEL B A, COLLINGSWORTH P D, et al. Optimal implementation of green infrastructure practices to minimize influences of land use change and climate change on hydrology and water quality: case study in Spy Run Creek watershed, Indiana[J]. Science of the Total Environment, 2017, 601/602: 1400-1411. DOI:10.1016/j.scitotenv.2017.06.015.
[34]
LIN C, XUE Y, ZHANG X, et al. Distribution of cadmium among multimedia in Lake Qinghai, China[J]. Environmental Earth Sciences, 2018, 77(4):153.
[35]
程嘉熠, 王晓萌, 杨正先, 等. 双台子河口沉积物重金属溯源及生态风险评估[J]. 中国环境科学, 2021, 41(3):1345-1353.
[36]
訾鑫源, 张鸣, 谷孝鸿, 等. 洪泽湖围栏养殖对表层沉积物重金属含量影响与生态风险评价[J]. 环境科学, 2021, 42(11): 5355-5363.
[37]
LI S, JIA Z. Heavy metals in soils from a representative rapidly developing megacity (SW China): levels, source identification and apportionment[J]. CATENA, 2018, 163:414-423.
[38]
RYDBERG J, GÄLMAN V, RENBERG I, et al. Assessing the stability of mercury and methylmercury in a varved lake sediment deposit[J]. Environmental Science & Technology, 2008, 42(12): 4391-4396.

Comments

PDF(3329 KB)

Accesses

Citation

Detail

Sections
Recommended

/