Deep process and lithospheric architectural control of Cu-REE mineralization in continental collision zone: Insights from a case study of the Gangdese and Sanjiang collisional belts

Rui WANG, Jingbo ZHANG, Chenhao LUO, Qiushi ZHOU, Wenjie XIA, Yun ZHAO

PDF(6639 KB)
PDF(6639 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1) : 211-225. DOI: 10.13745/j.esf.sf.2023.12.19

Deep process and lithospheric architectural control of Cu-REE mineralization in continental collision zone: Insights from a case study of the Gangdese and Sanjiang collisional belts

Author information +
History +

Abstract

Situated in an archetypal continental collision zone the Tibetan Plateau developed world-class porphyry Cu and carbonate REE metallogenetic belts, yet there is no scientific consensus about the mechanism of continental collision control of Cu-REE mineralization in the region. The outstanding issues include the exact trigger mechanism for melting of the thickened lithosphere, the relationship between the lithospheric framework and Cu-REE metallogenesis, and the source of Cu, REE and volatiles and their depositional processes. To better understand the deep process and lithospheric architectural control of Cu-REE metallogenesis, this paper summarizes the lithospheric architecture of the Gangdese forward and oblique collision zones had been imaged and analyzed using joint inversion of surface wave and satellite gravity data, combined with magnetotelluric (MT) array and geochemical data. During the India-Asia collision in the Cenozoic the subducting Indian lithosphere experienced significant tearing, allowing asthenospheric upwelling to rework the overlying Asian lithosphere and cause melting. The resulting ultrapotassic melt ascended and accumulated at the bottom of the crust, providing high heat flow and volatiles for the melting of the juvenile lower crust. In the hydrous melt, amphibole fractionation led to melt oxidation, promoting Cu recycling and enrichment. The above results revealed three key factors controlling the formation of collisional porphyry deposits: moderate-angle subduction, slab tearing, and reactivation of the sulfide-enriched juvenile lower crust. At the margin of the Yangtze craton, Sanjiang oblique collision zone, vertical upwelling and horizontal flow of asthenosphere, driven by subduction of the Indian plate or mantle convection, caused thermal erosion and partial melting of the cratonic continental lithosphere. The lithosphere beneath the craton margin was REE enriched due to prior metasomatism by REE/CO2-rich fluid from recycled oceanic sediment, and enriched REEs were carried by ascending carbonate melt along the lithosphere discontinuity (e.g., strike-slip fault, rift) to form large scale carbonate REE deposits. Without prior lithospheric metasomatism, carbonatic, ultrapotassic and mafic melts produced from the melting of the cratonic lithosphere had limited potential to form carbonate REE deposits.

Key words

continental plate subduction / continental collision / slab tearing / Hf isotopic mapping / juvenile crust

Cite this article

Download Citations
Rui WANG , Jingbo ZHANG , Chenhao LUO , et al . Deep process and lithospheric architectural control of Cu-REE mineralization in continental collision zone: Insights from a case study of the Gangdese and Sanjiang collisional belts. Earth Science Frontiers. 2024, 31(1): 211-225 https://doi.org/10.13745/j.esf.sf.2023.12.19

References

[1]
RICHARDS J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8): 1515-1533.
[2]
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
[3]
侯增谦, 孟祥金, 曲晓明, 等. 西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性: 源岩相变及深部过程约束[J]. 矿床地质, 2005, 24(3): 108-121.
[4]
侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征, 岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83(12): 1779-1817.
[5]
ZHU D C, WANG Q, WEINBERG R F, et al. Interplay between oceanic subduction and continental collision in building continental crust[J]. Nature Communications, 2022, 13(1): 7141.
[6]
ZHU D C, WANG Q, WEINBERG R F, et al. Continental crustal growth processes recorded in the Gangdese batholith, southern Tibet[J]. Annual Review of Earth and Planetary Sciences, 2023, 51(1): 155-188.
[7]
WANG R, WEINBERG R F, ZHU D C, et al. The impact of a tear in the subducted Indian plate on the Miocene geology of the Himalayan-Tibetan orogen[J]. GSA Bulletin, 2022, 134(3/4): 681-690.
[8]
HOU Z, WANG R, ZHANG H, et al. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian plate[J]. Earth-Science Reviews, 2023, 243: 104482.
[9]
ALLÉGRE C J, COURTILLOT V, TAPPONNIER P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946): 17-22.
[10]
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
[11]
莫宣学, 董国臣, 赵志丹, 等. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报, 2005, 11(3): 281-290.
[12]
侯增谦, 赵志丹, 高永丰, 等. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报, 2006, 22(4): 761-774.
[13]
ZHU D C, ZHAO Z D, NIU Y, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
[14]
HOU Z, DUAN L, LU Y, et al. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology, 2015, 110(6): 1541-1575.
[15]
莫宣学, 赵志丹, 邓晋福, 等. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135-148.
[16]
WANG R, ZHU D, WANG Q, et al. Porphyry mineralization in the Tethyan Orogen[J]. Science China Earth Sciences, 2020, 63(12): 2042-2067.
[17]
张泽明, 丁慧霞, 董昕, 等. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 2019, 35(2): 275-294.
[18]
ZHU D C, WANG Q, CHUNG S L, et al. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma[J]. Geological Society, London, Special Publications, 2019, 483(1): 583-604.
[19]
LUO C H, WANG R, WEINBERG R F, et al. Isotopic spatial-temporal evolution of magmatic rocks in the Gangdese belt: implications for the origin of Miocene post-collisional giant porphyry deposits in southern Tibet[J]. GSA Bulletin, 2022, 134(1/2): 316-324.
[20]
CHUNG S L, CHU M F, ZHANG Y, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3/4): 173-196.
[21]
JI W, WU F, LIU C, et al. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet[J]. Science in China Series D: Earth Sciences, 2009, 52(9): 1240-1261.
[22]
DING L. Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10): 1833-1865.
[23]
ZHAO Z, MO X, DILEK Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet[J]. Lithos, 2009, 113(1/2): 190-212.
[24]
ZHU D C, ZHAO Z D, NIU Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454.
[25]
ZHENG Y, WU F. The timing of continental collision between India and Asia[J]. Science Bulletin, 2018, 63(24): 1649-1654.
[26]
DENG J, WANG Q, LI G, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299.
[27]
HOU Z Q, MA H W, KHIN Z, et al. The Himalayan Yulong porphyry copper belt: product of large-scale strike-slip faulting in eastern Tibet[J]. Economic Geology, 2003, 98(1): 125-145.
[28]
WANG R, LUO C H, XIA W J, et al. Role of alkaline magmatism in formation of porphyry deposits in nonarc settings: Gangdese and Sanjiang metallogenic belts[M]//SHOLEH A, WANG R. Tectonomagmatic influences on metallogeny and hydrothermal ore deposits: a tribute to Jeremy P. Richards (Volume II). Littleton: Society of Economic Geologists, 2021: 205-229.
[29]
HOU Z Q, XU B, ZHANG H, et al. Refertilized continental root controls the formation of the Mianning-Dechang carbonatite-associated rare-earth-element ore system[J]. Communications Earth & Environment, 2023, 4(1): 293.
[30]
HOU Z, XU B, ZHENG Y, et al. Mantle flow: the deep mechanism of large-scale growth in Tibetan Plateau[J]. Chinese Science Bulletin, 2021, 66(21): 2671-2690.
[31]
HOU Z, YANG Z, QU X, et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(1/2/3): 25-51.
[32]
ZHENG Y, SUN X, GAO S, et al. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt[J]. Journal of Asian Earth Sciences, 2015, 103: 23-39.
[33]
侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩 Cu-Mo-Au 矿床成矿作用[J]. 地学前缘, 2020, 27(2): 20-44.
[34]
YANG Z, COOKE D R. Porphyry copper deposits in China[M]//CHANG Z, GOLDFARB R J. Mineral deposits of China. Littleton: Society of Economic Geologists. 2019: 133-187.
[35]
侯增谦, 杨志明, 田世洪, 等. 川西冕宁-德昌喜马拉雅期稀土元素成矿带: 矿床地质特征与区域成矿模型[J]. 矿床地质, 2008, 27(2): 145-176.
[36]
LI J, SONG X. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8296-8300.
[37]
GAO R, LU Z, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9(7): 555-560.
[38]
ZHAO J, YUAN X, LIU H, et al. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences, 2010, 107(25): 11229-11233.
[39]
JARQUÍN E, WANG R, SUN W R, et al. Impact of slab tearing along the Yadong-Gulu rift on Miocene alkaline volcanism from the Lhasa Terrane to the Himalayas, southern Tibet[J]. Geological Society of America Bulletin, 2023. DOI: 10.1130/B36991.1.
[40]
FOLEY S, FISCHER T. The carbon cycle in the continental lithosphere and the generation of alkaline mafic melts in cratonic and rift regions[C]// International kimberlite conference extended abstracts. Alberta, 2017: 11IKC-4654.
[41]
SONG W, XU C, SMITH M P, et al. Genesis of the world's largest rare earth element deposit, Bayan Obo, China: protracted mineralization evolution over 1 b.y[J]. Geology, 2018, 46(4): 323-326.
[42]
KAY S M, MPODOZIS C. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust[J]. GSA Today, 2001, 11(3): 4.
[43]
MUNGALL J E. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geology, 2002, 30(10): 915.
[44]
BISSIG T, CLARK A H, LEE J K W, et al. Petrogenetic and metallogenetic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au-Ag-Cu belt, Chile/Argentina[J]. Mineralium Deposita, 2003, 38(7): 844-862.
[45]
KAY S M, MPODOZIS C, COIRA B. Neogene magmatism, tectonism, and mineral deposits of the Central Ande (22° to 33° S Latitude)[M]//SKINNER B J. Geology and ore deposits of the Central Andes. Littleton: Society of Economic Geologists, 1999: 27-59.
[46]
COOKE D R, HOLLINGS P, WALSHE J L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818.
[47]
HOU Z, ZHENG Y, YANG Z, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2013, 48(2): 173-192.
[48]
HOU Z, YANG Z, LU Y, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250.
[49]
LI C, VAN DER HILST R D, MELTZER A S, et al. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 157-168.
[50]
ZHOU Q, WANG R. Shallow subduction of Indian slab and tectono-magmatic control on post-collisional porphyry mineralization in southeastern Tibet[J]. Ore Geology Reviews, 2023, 155: 105360.
[51]
HOU Z Q, GAO Y F, QU X M, et al. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 139-155.
[52]
侯增谦, 高永丰, 孟祥金, 等. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制[J]. 岩石学报, 2004, 20(2): 1-10.
[53]
侯增谦, 郑远川, 杨志明, 等. 大陆碰撞成矿作用: Ⅰ. 冈底斯新生代斑岩成矿系统[J]. 矿床地质, 2012, 31(4): 647-670.
[54]
RICHARDS J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37(3): 247-250.
[55]
LI J X, QIN K Z, LI G M, et al. Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: melting of thickened juvenile arc lower crust[J]. Lithos, 2011, 126(3-4): 265-277.
[56]
WANG X, ZHANG J, RUSHMER T, et al. Adakite-like potassic magmatism and crust-mantle interaction in a postcollisional setting: an experimental study of melting beneath the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12): 12782-12798.
[57]
WANG R, COLLINS W J, WEINBERG R F, et al. Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust-mantle mixing and metamorphism in the deep crust[J]. Contributions to Mineralogy and Petrology, 2016, 171(7): 62.
[58]
YANG Z M, LU Y J, HOU Z Q, et al. High-Mg Diorite from Qulong in Southern Tibet: implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens[J]. Journal of Petrology, 2015, 56(2): 227-254.
[59]
HAO L L, WANG Q, WYMAN D A, et al. First identification of postcollisional A-type magmatism in the Himalayan-Tibetan Orogen[J]. Geology, 2019, 47(2): 187-190.
[60]
HAO L L, WANG Q, KERR A C, et al. Contribution of continental subduction to very light B isotope signatures in post-collisional magmas: evidence from southern Tibetan ultrapotassic rocks[J]. Earth and Planetary Science Letters, 2022, 584: 117508.
[61]
ZHANG J, WANG R, HONG J. Amphibole fractionation and its potential redox effect on arc crust: evidence from the Kohistan arc cumulates[J]. American Mineralogist, 2022, 107(9): 1779-1788.
[62]
DAVIDSON J, TURNER S, HANDLEY H, et al. Amphibole“sponge” in arc crust?[J]. Geology, 2007, 35(9): 787.
[63]
CHEN N, MAO J, ZHANG Z, et al. Arc magmatic evolution and porphyry copper deposit formation under compressional regime: a geochemical perspective from the Toquepala arc in Southern Peru[J]. Earth-Science Reviews, 2023, 240: 104383.
[64]
WANG R, RICHARDS J P, HOU Z Q, et al. Increasingmagmatic oxidation state from Paleocene to Miocene in the eastern Gangdese belt, Tibet: implication for collision-related porphyry Cu-Mo Au mineralization[J]. Economic Geology, 2014, 109(7): 1943-1965.
[65]
XU L L, ZHU J J, HUANG M L, et al. Genesis of hydrous-oxidized parental magmas for porphyry Cu (Mo, Au) deposits in a postcollisional setting: examples from the Sanjiang region, SW China[J]. Mineralium Deposita, 2023, 58(1): 161-196.
[66]
HOU Z, ZHOU Y, WANG R, et al. Recycling of metal-fertilized lower continental crust: origin of non-arc Au-rich porphyry deposits at cratonic edges[J]. Geology, 2017, 45(6): 563-566.
[67]
WANG R, RICHARDS J P, ZHOU L M, et al. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet[J]. Earth-Science Reviews, 2015, 150: 68-94.
[68]
WANG R, WEINBERG R F, COLLINS W J, et al. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth-Science Reviews, 2018, 181: 122-143.
[69]
CHANG J, AUDÉTAT A. Post-subduction porphyry Cu magmas in the Sanjiang region of southwestern China formed by fractionation of lithospheric mantle-derived mafic magmas[J]. Geology, 2023, 51(1): 64-68.
[70]
ZHANG J, CHANG J, WANG R, et al. Can post-subduction porphyry Cu magmas form by partial melting of typical lower crustal amphibole-rich cumulates? Petrographic and experimental constraints from samples of the Kohistan and Gangdese arc roots[J]. Journal of Petrology, 2022, 63(11): egac101.
[71]
XU B, HOU Z Q, GRIFFIN W L, et al. Recycled volatiles determine fertility of porphyry deposits in collisional settings[J]. American Mineralogist, 2021, 106(4): 656-661.
[72]
ZHENG Y C, LIU S A, WU C D, et al. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting[J]. Geology, 2019, 47(2): 135-138.
[73]
ZHANG D, AUDÉTAT A. What caused the formation of the giant Bingham Canyon porphyry Cu-Mo-Au deposit? Insights from melt inclusions and magmatic sulfides[J]. Economic Geology, 2017, 112(2): 221-244.
[74]
CHIARADIA M, CARICCHI L. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment[J]. Scientific Reports, 2017, 7(1): 44523.
[75]
LEE C T A, TANG M. How to make porphyry copper deposits[J]. Earth and Planetary Science Letters, 2020, 529: 115868.
[76]
XIA W J, WANG R, JENNER F. Sulfide resorption contributes to porphyry deposit formation in collisional settings[J]. Ore geology reviews, 2023, 163: 105804.
[77]
WIESER P E, JENNER F, EDMONDS M, et al. Chalcophile elements track the fate of sulfur at Kīlauea volcano, Hawai’i[J]. Geochimica et Cosmochimica Acta, 2020, 282, 245-275.
[78]
LI J X, LI G M, EVANS N J, et al. Primary fluid exsolution in porphyry copper systems: evidence from magmatic apatite and anhydrite inclusions in zircon[J]. Mineralium Deposita, 2021, 56(2): 407-415.
[79]
ZHAO J, QIN K, XIAO B, et al. Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: constraints on magmatic-hydrothermal evolution and exhumation[J]. Gondwana Research, 2016, 36: 390-409.
[80]
HUANG M L, GAO J F, BI X W, et al. The role of early sulfide saturation in the formation of the Yulong porphyry Cu-Mo deposit: evidence from mineralogy of sulfide melt inclusions and platinum-group element geochemistry[J]. Ore Geology Reviews, 2020, 124: 103644.

Comments

PDF(6639 KB)

Accesses

Citation

Detail

Sections
Recommended

/