Prediction of volcanic CO2 flux based on random simulation: Taking the Mount Etna, Italy as an example

Haoran SUN, Jiale DOU, Nan LI, Peng WU, Cong DU, Xianzhe DUAN

PDF(3164 KB)
PDF(3164 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4) : 429-437. DOI: 10.13745/j.esf.sf.2023.11.66

Prediction of volcanic CO2 flux based on random simulation: Taking the Mount Etna, Italy as an example

Author information +
History +

Abstract

Volcanic activity, as a significant source of geological carbon emissions and contributor to deep carbon cycles, transports carbon from the Earth’s interior to the atmosphere. Greenhouse gases, particularly CO2, emitted by volcanic regions, exert a profound influence on global climate dynamics. Against the backdrop of global warming and initiatives such as the “carbon neutral” program, accurately estimating the flux of greenhouse gases from volcanic regions and assessing their impact on global carbon budgets are imperative. This paper elucidates the primary characteristics and survey methodologies for quantifying greenhouse gas emissions in volcanic areas. It proposes employing geostatistical methods to simulate CO2 sampling data from volcanoes, exemplified by Mount Etna, Italy. Additionally, the feasibility of incorporating covariates for cokriging interpolation simulations is analyzed, with comparisons drawn against ordinary kriging interpolation methods. Our findings reveal a correlation between CO2 release flux and soil temperature in volcanic regions, indicating that integrating soil temperature into cokriging interpolation simulations can mitigate error indices in the results. This research offers critical insights for quantitatively assessing the impact of volcanic activity on climate change and enhancing early warning systems for volcanic hazards.

Key words

volcanic activity / greenhouse gas / carbon emission / stochastic simulation / Kriging interpolation method

Cite this article

Download Citations
Haoran SUN , Jiale DOU , Nan LI , et al . Prediction of volcanic CO2 flux based on random simulation: Taking the Mount Etna, Italy as an example. Earth Science Frontiers. 2024, 31(4): 429-437 https://doi.org/10.13745/j.esf.sf.2023.11.66

References

[1]
GRIGGS D J, NOGUER M. Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change[J]. Weather, 2002, 57(8): 267-269.
[2]
郭正府, 张茂亮, 孙玉涛, 等. 火山温室气体释放通量与观测的研究进展[J]. 矿物岩石地球化学通报, 2015, 34(4): 690-700, 673.
[3]
赵永存, 孙维侠, 黄标, 等. 不同随机模拟方法定量土壤镉含量预测的不确定性研究[J]. 农业环境科学学报, 2008, 27(1): 139-146.
[4]
王艳妮, 谢金梅, 郭祥. ArcGIS中的地统计克里格插值法及其应用[J]. 软件导刊, 2008(12): 36-38.
[5]
庞夙, 李廷轩, 王永东, 等. 县域农田土壤铜含量的协同克里格插值及采样数量优化[J]. 中国农业科学, 2009, 42(8): 2828-2836.
[6]
郭龙, 张海涛, 陈家赢, 等. 基于协同克里格插值和地理加权回归模型的土壤属性空间预测比较[J]. 土壤学报, 2012, 49(5): 1037-1042.
[7]
郭正府, 郑国东, 孙玉涛, 等. 中国大陆地质源温室气体释放[J]. 矿物岩石地球化学通报, 2017, 36(2): 204-212, 183.
[8]
郑国东, 赵文斌, 陈志, 等. 中国地质源温室气体释放近十年研究概述[J]. 矿物岩石地球化学通报, 2021, 40(6): 1250-1271, 1449.
[9]
郭正府, 张茂亮, 成智慧, 等. 中国大陆新生代典型火山区温室气体释放的规模及其成因[J]. 岩石学报, 2014, 30(11): 3467-3480.
[10]
HALMER M M, SCHMINCKE H U, GRAF H F. The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years[J]. Journal of Volcanology and Geothermal Research, 2002, 115(3/4): 511-528.
[11]
GERLACH T M. Present-day CO2 emissions from volcanos[J]. Eos, Transactions American Geophysical Union, 1991, 72(23): 249-255.
[12]
WILLIAMS S N, SCHAEFER S J, MARTA LUCIA CALVACHE V, et al. Global carbon dioxide emission to the atmosphere by volcanoes[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1765-1770.
[13]
ALLARD P. Global emissions of helium-3 by subaerial volcanism[J]. Geophysical Research Letters, 1992, 19(14): 1479-1481.
[14]
MARTY B, LE CLOAREC M F. Helium-3 and CO2 fluxes from subaerial volcanoes estimated from polonium-210 emissions[J]. Journal of Volcanology and Geothermal Research, 1992, 53(1/2/3/4): 67-72.
[15]
VAREKAMP J C, KREULEN R, POORTER R P E, et al. Carbon sources in arc volcanism, with implications for the carbon cycle[J]. Terra Nova, 1992, 4(3): 363-373.
[16]
SANO Y, WILLIAMS S N. Fluxes of mantle and subducted carbon along convergent plate boundaries[J]. Geophysical Research Letters, 1996, 23(20): 2749-2752.
[17]
MARTY B, TOLSTIKHIN I N. CO2 fluxes from mid-ocean ridges, arcs and plumes[J]. Chemical Geology, 1998, 145(3/4): 233-248.
[18]
MÖRNER N A, ETIOPE G. Carbon degassing from the lithosphere[J]. Global and Planetary Change, 2002, 33(1/2): 185-203.
[19]
WERNER C, BRANTLEY S. CO2 emissions from the Yellowstone volcanic system[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(7): 1061.
[20]
BURTON M R, SAWYER G M, GRANIERI D. Deep carbon emissions from volcanoes[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 323-354.
[21]
赵文斌, 郭正府, 孙玉涛, 等. 火山区CO2气体释放研究进展[J]. 矿物岩石地球化学通报, 2018, 37(4): 601-620, 795.
[22]
LEE C T A, LACKEY J S. Global continental arc flare-ups and their relation to long-term greenhouse conditions[J]. Elements, 2015, 11(2): 125-130.
[23]
CARAPEZZA M L, GRANIERI D. CO2 soil flux at Vulcano (Italy): comparison between active and passive methods[J]. Applied Geochemistry, 2004, 19(1): 73-88.
[24]
郭正府, 李晓惠, 张茂亮. 火山活动与深部碳循环的关系[J]. 第四纪研究, 2010, 30(3): 497-505.
[25]
BERGFELD D, EVANS W C, LOWENSTERN J B, et al. Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming[J]. Chemical Geology, 2012, 330: 233-243.
[26]
ALLARD P, CARBONNELLE J, DAJLEVIC D, et al. Eruptive and diffuse emissions of CO2 from Mount Etna[J]. Nature, 1991, 351: 387-391.
[27]
GERLACH T M, DELGADO H, MCGEE K A, et al. Application of the LI-COR CO2 analyzer to volcanic plumes: a case study, volcán Popocatépetl, Mexico, June 7 and 10, 1995[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B4): 8005-8019.
[28]
CHIODINI G, FRONDINI F, CARDELLINI C, et al. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B8): 16213-16221.
[29]
张茂亮, 郭正府, 成智慧, 等. 长白山火山区温泉温室气体排放通量研究[J]. 岩石学报, 2011, 27(10): 2898-2904.
[30]
CHIODINI G, CIONI R, GUIDI M, et al. Soil CO2 flux measurements in volcanic and geothermal areas[J]. Applied Geochemistry, 1998, 13(5): 543-552.
[31]
刘东阳, 范昱宏, 张宇, 等. 火山气体地球化学监测与研究进展[J]. 矿物岩石地球化学通报, 2020, 39(2): 336-343.
[32]
GIGGENBACH W F, SANO Y, WAKITA H. Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary[J]. Geochimica et Cosmochimica Acta, 1993, 57(14): 3427-3455.
[33]
SANO Y, MARTY B. Origin of carbon in fumarolic gas from island arcs[J]. Chemical Geology, 1995, 119(1/2/3/4): 265-274.
[34]
ZHANG M L, GUO Z F, SANO Y, et al. Stagnant subducted pacific slab-derived CO2 emissions: insights into magma degassing at Changbaishan volcano, NE China[J]. Journal of Asian Earth Sciences, 2015, 106: 49-63.
[35]
郭正府, 张茂亮, 张丽红, 等. 我国大陆活火山区温室气体的释放特点与规模[C]// 2018年中国地球科学联合学术年会论文集(三十九)—专题84: 地球深部碳循环. 北京, 2018: 9.
[36]
张丽红, 郭正府, 郑国东, 等. 藏南新生代火山-地热区温室气体的释放通量与成因: 以谷露-亚东裂谷为例[J]. 岩石学报, 2017, 33(1): 250-266.
[37]
高清武. 长白山天池火山水热活动及气体释放特征[J]. 地球学报, 2004, 25(3): 345-350.
[38]
汤吉, 邓前辉, 赵国泽, 等. 长白山天池火山区电性结构和岩浆系统[J]. 地震地质, 2001, 23(2): 191-200.
[39]
姜枚, 谭捍东, 张聿文, 等. 云南腾冲火山构造区马站—固东岩浆囊的地球物理模式[J]. 地球学报, 2012, 33(5): 731-739.
[40]
ROWE G L. Encyclopedia of volcanoes[J]. Eos, Transactions American Geophysical Union, 2000, 81(21): 241.
[41]
HILTON D R, FISCHER T P, MARTY B. Noble gases and volatile recycling at subduction zones[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 319-370.
[42]
LEE C T A, SHEN B, SLOTNICK B S, et al. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change[J]. Geosphere, 2013, 9(1): 21-36.
[43]
成智慧, 郭正府, 张茂亮, 等. 腾冲新生代火山区温泉CO2气体排放通量研究[J]. 岩石学报, 2012, 28(4): 1217-1224.
[44]
刘嘉麒, 陈双双, 郭文峰, 等. 长白山火山研究进展[J]. 矿物岩石地球化学通报, 2015, 34(4): 710-723.
[45]
LE CLOAREC M F, MARTY B. Volatile fluxes from volcanoes[J]. Terra Nova, 1991, 3(1): 17-27.
[46]
GIAMMANCO S, MELIÁN G, NERI M, et al. Active tectonic features and structural dynamics of the summit area of Mt. Etna (Italy) revealed by soil CO2 and soil temperature surveying[J]. Journal of Volcanology and Geothermal Research, 2016, 311: 79-98.

Comments

PDF(3164 KB)

Accesses

Citation

Detail

Sections
Recommended

/