Research advances on the geochronology of Carlin-type gold deposits in the Youjiang Basin, southwestern China

Wei GAO, Ruizhong HU, Qiuli LI, Jianzhong LIU, Xianhua LI

PDF(9477 KB)
PDF(9477 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1) : 267-283. DOI: 10.13745/j.esf.sf.2023.11.39

Research advances on the geochronology of Carlin-type gold deposits in the Youjiang Basin, southwestern China

Author information +
History +

Abstract

The Youjiang Basin hosts the world's second largest Carlin-type gold province after Nevada, USA. However, due partly to the uncertainty of their mineralization age the geodynamic setting of the Carlin-type gold deposits remains unclear. During the past forty years significant efforts have been made to accurately constrain the timing of these gold deposits, ranging from the early dating methods (with low reliability) such as quartz fission track and fluid inclusion Rb-Sr isochron dating, to the midterm dissolution-based bulk analyses of mineral separates such as sulfide Re-Os, to the latest in-situ precise U-Pb dating of hydrothermal U-bearing minerals including rutile, monazite, and apatite. It has now been clearly considered that there existed two episodes of Carlin-type gold mineralization in the Youjiang Basin ca. 215-200 Ma and 155-140 Ma, probably in response, respectively, to the Indosinian post-collisional intracontinental orogeny and the Yanshanian asthenospheric upwelling and lithospheric extension in southern China.

Key words

the Youjiang Basin / Carlin-type gold deposit / mineralization age / Indosinian and Yanshanian episodes of gold mineralization

Cite this article

Download Citations
Wei GAO , Ruizhong HU , Qiuli LI , et al . Research advances on the geochronology of Carlin-type gold deposits in the Youjiang Basin, southwestern China. Earth Science Frontiers. 2024, 31(1): 267-283 https://doi.org/10.13745/j.esf.sf.2023.11.39

References

[1]
WELLS J D, STROISER L R, ELLIOTT J E. Geology and geochemistry of Cortez gold deposit, Nevada[J]. Economic Geology, 1969, 64(5): 526-537.
[2]
HU R Z, SU W C, BI X W, et al. Geology and geochemistry of Carlin-type gold deposits in China[J]. Mineralium Deposita, 2002, 37(3/4): 378-392.
[3]
HU R Z, FU S L, HUANG Y, et al. The giant South China Mesozoic low-temperature metallogenic domain: reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 2017, 137: 9-34.
[4]
MUNTEAN J L, CLINE J S. Diversity of Carlin-type gold deposits[J]. Reviews in Economic Geology, 2018, 20: 1-5.
[5]
CLINE J S, HOFSTRA A H, MUNTEAN J L, et al. Carlin-type gold deposits in Nevada, critical geologic characteristics and viable models[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. Economic Geology 100th Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 451-484.
[6]
CLINE J S. Nevada's Carlin-type gold deposits, what we’ve learned during the past 10 to 15 years[J]. Reviews in Economic Geology, 2018, 20: 7-37.
[7]
SU W C, DONG W D, ZHANG X C, et al. Carlin-type gold deposits in the Dian-Qian-Gui “Golden Triangle” of Southwest China[J]. Reviews in Economic Geology, 2018, 20: 157-185.
[8]
WANG Q F, GROVES D. Carlin-style gold deposits, Youjiang Basin, China: tectono-thermal and structural analogues of the Carlin-type gold deposits, Nevada, USA[J]. Mineralium Deposita, 2018, 53(7): 909-918.
[9]
XIE Z J, XIA Y, CLINE H S, et al. Are there Carlin-type gold deposits in China? A comparison of the Guizhou, China, deposits with Nevada, USA, deposits[J]. Reviews in Economic Geology, 2018, 20: 187-233.
[10]
刘建中. 贵州贞丰-普安金矿整装勘查发现隐伏金矿体[EB/OL]. ( 2016-06-30)[2023-06-20]. https://www.cgs.gov.cn/xwl/cgkx/201607/t20160702_336920.html.
[11]
胡瑞忠, 温汉捷, 叶霖, 等. 扬子地块西南部关键金属元素成矿作用[J]. 科学通报, 65(33): 3700-3714.
[12]
胡瑞忠. 华南大规模低温成矿作用[M]. 北京: 科学出版社, 2021.
[13]
RASMUSSEN B, SHEPPARD S, FLETCHER I R. Testing ore deposit models using in situ U-Pb geochronology of hydrothermal monazite, Paleoproterozoic gold mineralization in northern Australia[J]. Geology, 2006, 34(2): 77-80.
[14]
AREHART G B. CHAKURIAN A M, TREBAR D R, et al. Evaluation of radioisotope dating of Carlin-type deposits in the Great Basin, western North America, and implications for deposit genesis[J]. Economic Geology, 2003, 98(2): 235-248.
[15]
李献华, 李扬, 李秋立, 等. 同位素地质年代学新进展与发展趋势[J]. 地质学报, 2022, 96(1): 104-122.
[16]
ZHAO J H, ZHOU M F, YAN D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4): 299-302.
[17]
HU R Z, ZHOU M F. Multiple Mesozoic mineralization events in South China: an introduction to the thematic issue[J]. Mineralium Deposita, 2012, 47(6): 579-588.
[18]
曾允孚, 刘文均, 陈洪德, 等. 华南右江复合盆地的沉积构造演化[J]. 地质学报, 1995, 69(2): 113-124.
[19]
杜远生, 黄宏伟, 黄志强, 等. 右江盆地晚古生代—三叠纪盆地转换及其构造意义[J]. 地质科技情报, 2009, 28(6): 10-15.
[20]
杜远生, 黄虎, 杨江海, 等. 晚古生代—中三叠世右江盆地的格局和转换[J]. 地质论评, 2013, 59(1): 1-11.
[21]
CAI J X, ZHANG K J. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic[J]. Tectonophysics, 2009, 467(1/2/3/4): 35-43.
[22]
QIU L, YAN D P, TANG S L, et al. Mesozoic geology of southwestern China: Indosinian foreland overthrusting and subsequent deformation[J]. Journal of Asian Earth Sciences, 2016, 122: 91-105.
[23]
QIU L, YAN D P, YANG W X, et al. Early to Middle Triassic sedimentary records in the Youjiang Basin, South China: implications for Indosinian orogenesis[J]. Journal of Asian Earth Sciences, 2017, 141(A): 125-139.
[24]
YANG W X, YAN D P, QIU L, et al. Formation and forward propagation of the Indosinian foreland fold-thrust belt and Nanpanjiang foreland basin in SW China[J]. Tectonics, 2021, 40(4): e2020TC006552.
[25]
庄新国. 桂西北地区古地热场特征及其在微细粒浸染型金矿床形成中的作用[J]. 矿床地质, 1995, 14(1): 82-88.
[26]
索书田, 毕先梅, 赵文霞, 等. 右江盆地三叠纪岩层极低级变质作用及地球动力学意义[J]. 地质科学, 1998, 33(4): 396-405.
[27]
ZHOU M F, ZHAO J H, QI L. Zircon U-Pb geochronology and elemental and Sr-Nd isotopic geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contribution to Mineralogy and Petrology, 2006, 151(1): 1-19.
[28]
FAN W M, ZHANG C H, WANG Y J, et al. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: evidence for plume-lithosphere interaction[J]. Lithos, 2008, 102(1/2): 218-236.
[29]
LIU S, SU W C, HU R Z, et al. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from Southwest Guizhou Province, SW China[J]. Lithos, 2010, 114(1/2): 253-264.
[30]
ZHU J J, HU R Z, RICHARDS J P, et al. No genetic link between Late Cretaceous felsic dikes and Carlin-type Au deposits in the Youjiang Basin, Southwest China[J]. Ore Geology Reviews, 2017, 84: 328-337.
[31]
向忠金. 桂西南晚古生代—早中生代岩浆岩成因和构造属性[D]. 北京: 中国科学院地质与地球物理研究所, 2018.
[32]
GAN C S, WANG Y J, BARRY T L, et al. Late Jurassic high-Mg andesites in the Youjiang Basin and their significance for the southward continuation of the Jiangnan Orogen, South China[J]. Gondwana Research, 2020, 77: 260-273.
[33]
KESLER S E, RICIPUTI L C, YE Z J. Evidence for a magmatic origin for Carlin-type gold deposits, isotopic composition of sulfur in the Betze-Post-Screamer deposit, Nevada, USA[J]. Mineralium Deposita, 2005, 40: 127-136.
[34]
BARKER S L, HICKEY K A, CLINE J S, et al. Uncloaking invisible gold: use of Nano SIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits[J]. Economic Geology, 2009, 104(7): 897-904.
[35]
SU W C, ZHANG H T, HU R Z, et al. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for gold depositional processes[J]. Mineralium Deposita, 2012, 47(6): 653-662.
[36]
GAO W, HU R Z, MEI L, et al. Monitoring the evolution of sulfur isotope and metal concentrations across gold-bearing pyrite of Carlin-type gold deposits in the Youjiang Basin, SW China[J]. Ore Geology Reviews, 2022, 147: 104990.
[37]
HOFSTRA A H, SNEE L W, RYE R O, et al. Age constraints on Jerritt Canyon and other Carlin-type gold deposits in the western United States: relationship to Mid-Tertiary extension and magmatism[J]. Economic Geology, 1999, 94(6): 769-802.
[38]
ZHUO Y Z, HU R Z, XIAO J F, et al. Trace elements and C-O isotopes of calcite from Carlin-type gold deposits in the Youjiang Basin, SW China: constraints on ore-forming fluid compositions and sources[J]. Ore Geology Reviews, 2019, 113: 103067.
[39]
JIN X Y, ZHAO J X, FENG Y X, et al. Calcite U-Pb dating unravels the age and hydrothermal history of the giant Shuiyindong Carlin-type gold deposits in the golden triangle, South China[J]. Economic Geology, 2021, 116(6): 1253-1265.
[40]
AREHART G B. Characteristics and origin of sediment-hosted disseminated gold deposits: a review[J]. Ore Geology Reviews, 1996, 1: 383-403.
[41]
AREHART G B, FOLAND K A, NAESER C W, et al., 40Ar/39Ar, K/Ar, and fission track geochronology of sediment-hosted disseminated gold deposits at Post-Betze, Carlin trend, northeastern Nevada[J]. Economic Geology, 1993, 88(3): 622-646.
[42]
GROFF J A, HEIZLER M T, MCINTOSH W C, et al. 40Ar/39Ar dating and mineral paragenesis for Carlin-type gold deposits along the Getchell trend, Nevada: evidence for Cretaceous and Tertiary gold mineralization[J]. Economic Geology, 1997, 92(5): 601-622.
[43]
TRETBAR D, AREHART G B, CHRISTENSEN J N. Dating gold deposition in a Carlin-type gold deposit using Rb/Sr methods on the mineral galkhaite[J]. Geology, 2000, 28(10): 947-950.
[44]
HALL C M, KESLER S E, SIMON G et al. Overlapping Cretaceous and Eocene alteration, Twin Creeks Carlin-type deposit, Nevada[J]. Economic Geology, 2000, 95(8): 1739-1752.
[45]
CHAKURIAN A M, AREHART G B, DONELICK R A, et al. Timing constraints of gold mineralization along the Carlin trend utilizing apatite fission track, 40Ar/39Ar, and apatite (U-Th)/He methods[J]. Economic Geology, 2003, 98(6): 1159-1171
[46]
RESSEL M W, HENRY C D. Igneous geology of the Carlin trend, Nevada, development of the Eocene plutonic complex and significance for Carlin-type gold deposits[J]. Economic Geology, 2006, 101(2): 347-383.
[47]
MUNTEAN J L, CLINE J S, SIMON A C, et al. Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits[J]. Nature Geoscience, 2011, 4: 122-127.
[48]
张峰, 杨科佑. 黔西南微细浸染型金矿裂变径迹成矿时代研究[J]. 科学通报, 1992, 37(17): 1593-1595.
[49]
罗孝桓. 黔西南右江区金矿床控矿构造样式及成矿作用分析[J]. 贵州地质, 1997, 14(4): 312-320.
[50]
朱赖民, 刘显凡, 金景福, 等. 滇黔桂微细浸染型金矿床时空分布于成矿流体来源研究[J]. 地质科学, 1998, 33(4): 463-474.
[51]
李红阳, 高振敏, 杨竹森, 等. 贵州丹寨卡林型金矿床地球化学特征[J]. 地质科学, 2002, 37(1): 4-7.
[52]
刘建中, 邓一明, 刘川勤, 等. 水银洞金矿床包裹体和同位素地球化学研究[J]. 贵州地质, 2006, 23(1): 51-56.
[53]
刘东升, 耿文辉. 我国卡林型金矿矿物特征及成矿条件探讨[J]. 地球化学, 1985, 3: 277-282.
[54]
陈庆年. 丹寨汞、金与油气成矿模式的探讨[J]. 矿物岩石地球化学通报, 1992, 11(1): 11-14.
[55]
王国田. 桂西北地区三条铷-锶等时线年龄[J]. 广西地质, 1992, 5(1): 29-35.
[56]
胡瑞忠, 苏文超, 毕献武, 等. 滇黔桂三角区微细浸染型金矿床成矿热液一种可能的演化途径: 年代学证据[J]. 矿物学报, 1995, 15(2): 144-149.
[57]
苏文超, 杨科佑, 胡瑞忠, 等. 中国西南部卡林型金矿床流体包裹体年代学研究: 以贵州烂泥沟大型卡林型金矿床为例[J]. 矿物学报, 1998, 18(3): 359-362.
[58]
刘平, 李沛刚, 马荣, 等. 一个与火山碎屑岩和热液喷发有关的金矿床: 贵州泥堡金矿[J]. 矿床地质, 2006, 25(1): 101-110.
[59]
俸月星, 陈民扬, 徐文炘. 独山锑矿稳定同位素地球化学研究[J]. 矿产与地质, 1993, 7(2): 119-126.
[60]
陶长贵, 刘觉生, 戴国厚. 册亨丫他金矿床地质特征及成因初探[J]. 贵州地质, 1987, 4(2): 135-150.
[61]
李文亢, 姜信顺, 具然弘, 等. 黔西南微细粒金矿床地质特征及成矿作用[G]//沈阳地质矿产研究所. 中国金矿主要类型区域成矿条件文集(黔西南地区). 北京: 地质出版社, 1998: 1-85.
[62]
李泽琴, 陈尚迪, 王奖臻, 等. 桂西金牙微细浸染型金矿床同位素地球化学研究[J]. 矿物岩石, 1995, 15(2): 66-72.
[63]
靳晓野. 黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究[D]. 武汉: 中国地质大学(武汉), 2017.
[64]
TAGAMI T, O'sULLIVAN P B. Fundamentals of fission-track thermochronology[J]. Reviews in Mineralogy and Geochemistry, 2005, 58: 19-47.
[65]
HU R G, PANG B C, BAI X J, et al. Progressive crushing 40Ar/39Ar dating of a gold-bearing quartz vein from the Liaotun Carlin-type gold deposit, Guangxi, southern China[J]. Scientific Reports, 2022, 12: 12793.
[66]
陈懋弘, 毛景文, 屈文俊, 等. 贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义[J]. 地质论评, 2007, 53(3): 371-382.
[67]
CHEN M H, MAO J W, LI C, et al. Re-Os isochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan-Guizhou-Guangxi “golden triangle”, southwestern China[J]. Ore Geology Reviews, 2015, 64: 316-327.
[68]
GE X, SELBY D, LIU J J, et al. Genetic relationship between hydrocarbon system evolution and Carlin-type gold mineralization: insights from Re-Os pyrobitumen and pyrite geochronology in the Nanpanjiang Basin, South China[J]. Chemical Geology, 2021, 559: 119953.
[69]
陈懋弘, 黄庆文, 胡瑛, 等. 贵州烂泥沟金矿层状硅酸盐矿物及其39Ar-40Ar年代学研究[J]. 矿物学报, 2009, 29(3): 353-362.
[70]
皮桥辉, 胡瑞忠, 彭科强, 等. 云南富宁者桑金矿床与基性岩年代测定: 兼论滇黔桂地区卡林型金矿成矿构造背景[J]. 岩石学报, 2016, 32(11): 3331-3342.
[71]
董文斗. 右江盆地南缘辉绿岩容矿金矿床地球化学研究[D]. 贵阳: 中国科学院大学(中国科学院地球化学研究所), 2017.
[72]
SU W C, HU R Z, XIA B, et al. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China[J]. Chemical Geology, 2009, 258(3/4): 269-274.
[73]
WANG Z P, TAN Q P, XIA Y, et al. Sm-Nd isochron age constraints of Au and Sb mineralization in southwestern Guizhou Province, China[J]. Minerals, 2021, 11: 100.
[74]
TAN Q P, XIA Y, XIE Z J, et al. Two hydrothermal events at the Shuiyindong Carlin-type gold deposit in southwestern China: insight from Sm-Nd dating of fluorite and calcite[J]. Minerals, 2019, 9: 230.
[75]
ZHENG L L, YANG R D, GAO J B, et al. Quartz Rb-Sr isochron ages of two type orebodies from the Nibao Carlin-type gold deposit, Guizhou, China[J]. Minerals, 2019, 9: 399-413.
[76]
CLINE J S. Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, North-Central Nevada[J]. Economic Geology, 2001, 96(1): 75-89.
[77]
SU W C, HENRICH C A, PETTKE T, et al. Sediment-hosted gold deposits in Guizhou, China: products of wall-rock sulfidation by deep crustal fluids[J]. Economic Geology, 2009, 104(1): 73-93.
[78]
GU X X, ZHANG Y M, LI B H, et al. Hydrocarbon and ore-bearing basinal fluids: a possible link between gold mineralization and hydrocarbon accumulation in the Youjiang Basin, South China[J]. Mineralium Deposita, 2012, 47(6): 663-682.
[79]
YAN J, HU R Z, LIU S, et al. Nano-SIMS element mapping and sulfur isotope analysis of Au-bearing pyrite from Lannigou Carlin-type Au deposit in SW China: new insights into the origin and evolution of Au-bearing fluids[J]. Ore Geology Reviews, 2018, 92: 29-41.
[80]
HUANG S Q, SONG Y C, ZHOU L M, et al. Influence of organic matter on Re-Os dating of sulfides: insight from the giant Jinding sedimentary-hosted Zn-Pb deposit, China[J]. Economic Geology, 2022, 117(4): 737-745.
[81]
GAO W, HU R Z, HOFSTRA A H, et al. Dating on hydrothermal rutile and monazite from the Badu gold deposit supports an Early Cretaceous age for Carlin-type gold mineralization in the Youjiang Basin, southwestern China[J]. Economic Geology, 2021, 116(6): 1355-1385.
[82]
GE X, SHEN C B, ZHOU R J, et al. Tracing fluid evolution in sedimentary basins with calcite geochemical, isotopic and U-Pb geochronological data: implications for petroleum and mineral resource accumulation in the Nanpanjiang Basin, South China[J]. GSA Bulletin, 2022, 134(7/8): 2097-2114.
[83]
YANG L, DENG J, GROVES D I, et al. Recognition of two contrasting structural- and mineralogical-gold mineral systems in the Youjiang Basin, China-Vietnam: orogenic gold in the south and Carlin-type in the north[J]. Geoscience Frontiers, 2020, 111(5): 1477-1494.
[84]
WANG Q F, YANG L, XUE X J, et al. Multi-stage tectonics and metallogeny associated with Phanerozoic evolution of the South China Block: a holistic perspective from the Youjiang Basin[J]. Earth-Science Reviews, 2020, 211: 103405.
[85]
PI Q H, HU R Z, XIONG B, et al. In situ SIMS U-Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China[J]. Mineralium Deposita, 2017, 52(8): 1179-1190.
[86]
CHEN M H, BAGAS L, LIAO X, et al. Hydrothermal apatite SIMS Th-Pb dating: constraints on the timing of low temperature hydrothermal Au deposit in Nibao, SW China[J]. Lithos, 2019, 324/325: 418-428.
[87]
LIN S R, HU K, CAO J, et al. Geochemistry and origin of hydrothermal apatite in Carlin-type Au deposits, southwestern China (Gaolong deposit)[J]. Ore Geology Reviews, 2023, 157: 105312.
[88]
JI X Z, CHEN M H, YANG L Q, et al. The relationship between Carlin-type Au mineralization and magmatism in the Youjiang Basin: a case study from the Mingshan gold deposit in Northwest Guangxi, China[J]. Ore Geology Reviews, 2023, 157: 105400.
[89]
GAO W, HU R Z, HUANG Y, et al. Hydrothermal apatite as a robust U-Th-Pb chronometer for the Carlin-type gold deposits in the Youjiang Basin, SW China[J]. Mineralium Deposita, 2023. https://doi.org/10.1007/s00126-023-01196-6.
[90]
GAO W, MEI L, HU R Z, et al. Age of Carlin-type gold mineralization in the Youjiang Basin, South China: constraint from hydrothermal zircon geochronology in the Badu dolerite-hosted gold deposit[J]. Ore Geology Reviews, 2023, 163: 105771.
[91]
黄勇. 黔西南地区卡林型金矿成矿时代及成矿物质来源研究[D]. 贵阳: 中国科学院大学(中国科学院地球化学研究所), 2019.
[92]
CHERNIAK D J. Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime[J]. Reviews in Mineralogyand Geochemistry, 2010, 72: 827-869.
[93]
MILLONIG L J, GERDES A, GROAT L A. The effect of amphibolite facies metamorphism on the U-Th-Pb geochronology of accessory minerals from meta-carbonatites and associated meta-alkaline rocks[J]. Chemical Geology, 2013, 353: 199-209.
[94]
ZHAO X F, ZHOU M F, SU Z K, et al. Geology, geochronology, and geochemistry of the Dahongshan Fe-Cu-(Au-Ag) deposit, Southwest China: implications for the formation of iron oxide copper-gold deposits in intracratonic rift settings[J]. Economic Geology, 2017, 112: 603-628.
[95]
LI X C, ZHOU M F, CHEN W T, et al. Uranium-lead dating of hydrothermal zircon and monazite from the Sin Quyen Fe-Cu-REE-Au-(U) deposit, northwestern Vietnam[J]. Mineralium Deposita, 2018, 53: 399-416.
[96]
LI X C, FAN H R, ZENG X, et al. Identification of -1.3 Ga hydrothermal zircon from the giant Bayan Obo REE deposit (China): implication for dating geologically-complicated REE ore system[J]. Ore Geology Reviews, 2021, 138: 104405.
[97]
HUANG Y, HU R Z, BI X W, et al. Low-temperature thermochronology of the Carlin-type gold deposits in southwestern Guizhou, China: implications for mineralization age and geological thermal events[J]. Ore Geology Reviews, 2019, 115: 103178.
[98]
LI X C, YANG K F, SPANDLER C, et al. The effect of fluid-aided modification on the Sm-Nd and Th-Pb geochronology of monazite and bastnäsite: implication for resolving complex isotopic age data in REE ore systems[J]. Geochimica Cosmochimica Acta, 2021, 300: 1-24.
[99]
MAO J W, CHENG Y B, CHEN M H, et al. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48(3): 267-294.
[100]
WANG Y J, FAN W M, ZHANG G W, et al. Phanerozoic tectonics of the South China Block: key observations and controversies[J]. Gondwana Research, 2013, 23: 1273-1305.
[101]
LI J H, ZHANG Y Q, DONG S W, et al. Cretaceous tectonic evolution of South China: a preliminary synthesis[J]: Earth-Science Reviews, 2014, 134: 98-136.
[102]
ZHANG H J, LV Q T, WANG X L, et al. Seismically imaged lithospheric delamination and its controls on the Mesozoic magmatic province in South China[J]. Nature Communications, 2023, 14: 2718.
[103]
谢桂青, 毛景文, 张长青, 等. 华南地区三叠纪矿床地质特征、成矿规律和矿床模型[J]. 地学前缘, 2021, 28 (3): 252-270.
[104]
LI W, XIE G Q, MAO J W, et al. Precise age constraints for the Woxi Au-Sb-W deposit, South China[J]. Economic Geology, 2023, 118(2): 509-518.
[105]
毛景文, 谢桂清, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23 (10): 2329-2338.
[106]
BAI X J, LIU M, YU R G, et al. Well-constrained mineralization ages by integrated 40Ar/39Ar and U-Pb dating techniques for the Xitian W-Sn polymetallic deposit, South China[J]. Economic Geology, 2022, 117(4): 833-852.
[107]
NI P, PAN J Y, HAN L, et al. Tungsten and tin deposits in South China: temporal and spatial distribution, metallogenic models and prospecting directions[J]. Ore Geology Reviews, 2023, 157: 105453.
[108]
毛景文, 吴胜华, 宋世伟, 等. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型[J]. 科学通报, 2020, 65(33): 3746-3762.
[109]
SONG S W, MAO J W, XIE G Q, et al. The world-class Mid-Mesozoic Jiangnan tungsten belt, South China: coeval large reduced and small oxidized tungsten systems controlled by different magmatic petrogenesis[J]. Ore Geology Reviews, 2021, 139: 104543.
[110]
周涛发, 聂立青, 王世伟, 等. 长江中下游带钨矿床[J]. 岩石学报, 2019, 35(12): 3592-3608.
[111]
毛景文, 周涛发, 谢桂青, 等. 长江中下游地区成矿作用研究新进展和存在问题的思考[J]. 矿床地质, 2020, 39(4): 547-558.
[112]
LIU P, MAO J W, PIRAJNO F, et al. Ore genesis and geodynamic setting of the Lianhuashan porphyry tungsten deposit, eastern Guangdong Province, SE China: constraints from muscovite 40Ar-39Ar and zircon U-Pb dating and Hf isotopes[J]. Mineralium Deposita, 2017, 52(5): 1-18.
[113]
LIU P, MAO J W, SANTOSH M, et al. The Xiling Sn deposit, eastern Guangdong Province, Southeast China: a new genetic model from 40Ar-39Ar muscovite and U-Pb cassiterite and zircon geochronology[J]. Economic Geology, 2018, 113(2): 511-530.
[114]
MAO J W, ZHENG W, XIE G Q, et al. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the Southeast China coast: geological characteristics and metallogenic implications[J]. Geology, 2021, 49(5): 592-596.

Comments

PDF(9477 KB)

Accesses

Citation

Detail

Sections
Recommended

/