The Late Miocene to Pliocene paleoenvironmental evolution process in Zhaotong Basin on the southeastern margin of the Qinghai-Tibet Plateau

Pei LI, Chunxia ZHANG, Hao LUO, Zhicheng LIU, Zhanwu GAO

PDF(8219 KB)
PDF(8219 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4) : 326-339. DOI: 10.13745/j.esf.sf.2023.11.33

The Late Miocene to Pliocene paleoenvironmental evolution process in Zhaotong Basin on the southeastern margin of the Qinghai-Tibet Plateau

Author information +
History +

Abstract

Situated at the southeast margin of the Tibetan Plateau, the Yunnan region is pivotal for investigating Late Cenozoic climatic changes. While considerable research has focused on the paleoclimate and paleoenvironmental evolution of Yunnan, the understanding of climate change from the Late Miocene to Pliocene primarily relies on carbon isotope and pollen records. Consequently, there is a dearth of high-resolution, continuous paleoclimatic records documenting humidity changes during this period. This study utilizes sediment cores from the Late Miocene to Pliocene in the Zhaotong Basin, northeastern Yunnan Province. Through sediment grain size analysis, the sedimentary sequence, lithological characteristics, and sedimentary structures indicate that the Zhaotong Basin was predominantly characterized by swamp-subfacies sedimentary environments during 8.8-6.2 Ma, transitioning to shallow lake subfacies during 6.2-2.8 Ma, and lakeside subfacies during 2.8-2.6 Ma. Grain size parameters of sediments in the Zhaotong Basin exhibit a drying trend of the South Asian monsoon during the Late Miocene to Pliocene. Combined with clay mineral and chemical weathering results from borehole data in the early period, it is inferred that the South Asian monsoon gradually weakened from the Late Miocene to Pliocene, primarily influenced by global cooling and decreasing global CO2 concentrations.

Key words

Zhaotong Basin / Late Miocene / Pliocene / paleoenvironment

Cite this article

Download Citations
Pei LI , Chunxia ZHANG , Hao LUO , et al . The Late Miocene to Pliocene paleoenvironmental evolution process in Zhaotong Basin on the southeastern margin of the Qinghai-Tibet Plateau. Earth Science Frontiers. 2024, 31(4): 326-339 https://doi.org/10.13745/j.esf.sf.2023.11.33

References

[1]
CASANOVAS-VILAR I, ALBA D M, GARCÉS M, et al. Updated chronology for the Miocene hominoid radiation in western Eurasia[J]. Proceedings of the National Academy of Science, 2011, 108(14): 5554-5559.
[2]
JI X P, JABLONSKIN G, SU D F, et al. Juvenile hominoid cranium from the terminal Miocene of Yunnan, China[J]. Chinese Science Bulletin, 2013, 58(31): 3771-3779.
[3]
JABLONSKI N G, SU D F, FLYNN L J, et al. The site of Shuitangba (Yunnan, China) preserves a unique, terminal Miocene fauna[J]. Journal of Vertebrate Paleontology, 2014, 34(5): 1251-1257.
[4]
HARRISON T, JI X P, SU D. On the systematic status of the Late Neogene hominoids from Yunnan Province, China[J]. Journal of Human Evolution, 2002, 43(2): 207-227.
[5]
CHANG L, GUO Z T, DENG C L, et al. Pollen evidence of the palaeoenvironments of Lufengpithecus lufengensis in the Zhaotong Basin, southeastern margin of the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435: 95-104.
[6]
ZHANG C X, GUO Z T, DENG C L, et al. Clay mineralogy indicates a mildly warm and humid living environment for the Miocene hominoid from the Zhaotong Basin, Yunnan, China[J]. Scientific Reports, 2016, 6: 20012.
[7]
ZHAO L C, WANG Y F, LIU C J, et al. Climatic implications of fruit and seed assemblage from Miocene of Yunnan, southwestern China[J]. Quaternary International, 2004, 117(1): 81-89.
[8]
XU J X, FERGUSON D K, LI C S, et al. Climatic and ecological implications of Late Pliocene Palynoflora from Longling, Yunnan, China[J]. Quaternary International, 2004, 117(1): 91-103.
[9]
KOU X Y, FERGUSON D K, XU J X, et al. The reconstruction of paleovegetation and paleoclimate in the Late Pliocene of West Yunnan, China[J]. Climatic Change, 2006, 77(3): 431-448.
[10]
XU J X, FERGUSON D K, LI C S, et al. Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China[J]. Review of Palaeobotany and Palynology, 2008, 148(1): 36-59.
[11]
XIA K, SU T, LIU Y S, et al. Quantitative climate reconstructions of the Late Miocene Xiaolongtan megaflora from Yunnan, Southwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1/2/3/4): 80-86.
[12]
JACQUESF M B, GUO S X, SU T, et al. Quantitative reconstruction of the Late Miocene monsoon climates of Southwest China: a case study of the Lincang flora from Yunnan Province[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304(3/4): 318-327.
[13]
ZHANG Q Q, FERGUSON D K, MOSBRUGGER V, et al. Vegetation and climatic changes of SW China in response to the uplift of Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 363/364: 23-36
[14]
XING Y W, UTESCHER T, JACQUES F M B, et al. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the Late Miocene: evidence from plant macrofossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 358/359/360: 19-26.
[15]
BIASATTI D, WANG Y, GAO F, et al. Paleoecologies and paleoclimates of Late Cenozoic mammals from Southwest China: evidence from stable carbon and oxygen isotopes[J]. Journal of Asian Earth Sciences, 2012, 44: 48-61.
[16]
SU T, JACQUES F M B, SPICER R A, et al. Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the Late Pliocene Longmen megaflora[J]. Climate of the Past, 2013, 9(4): 1911-1920.
[17]
LI P, ZHANG C X, GUO Z T, et al. Clay mineral assemblages in the Zhaotong Basin of southwestern China: implications for the Late Miocene and Pliocene evolution of the South Asian monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 90-100.
[18]
LI P, ZHANG C X, KELLEY J, et al. Late Miocene climate cooling contributed to the disappearance of hominoids in Yunnan Region, southwestern China[J]. Geophysical Research Letters, 2020, 47(11): e87741.
[19]
XIAO J L, FAN J W, ZHOU L, et al. A model for linking grain-size component to lake level status of a modern clastic lake[J]. Journal of Asian Earth Sciences, 2013, 69: 149-158.
[20]
LU Y, FANG X M, FRIEDRICH O, et al. Characteristic grain-size component: a useful process-related parameter for grain-size analysis of lacustrine clastics?[J]. Quaternary International, 2018, 479: 90-99.
[21]
YANG L Y, ZHANG W L, FANG X M, et al. Aridification recorded by lithofacies and grain size in a continuous Pliocene-Quaternary lacustrine sediment record in the western Qaidam Basin, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 556: 109903.
[22]
王爱宽, 秦勇, 兰凤娟, 等. 云南昭通盆地新近系褐煤地球化学特征[C]// 煤层气勘探开发理论与技术: 2010年全国煤层气学术研讨会论文集. 苏州, 2010: 130-135.
[23]
屈念念, 李家斌. 云南昭通盆地重磁特征及其地质意义[J]. 中国地质调查, 2016, 3(4): 37-42.
[24]
罗星云, 张永宏. 云南新近纪聚煤盆地特征及成因类型[J]. 中国煤炭地质, 2013, 25(9): 10-17.
[25]
王建中. 昭通盆地上第三系褐煤煤层气资源勘探前景初步评价[J]. 中国煤层气, 2010, 7(2): 3-6.
[26]
姜能人, 孙荣. 对昭通盆地晚新生代地层的一些看法[J]. 云南地质, 1986, 3: 74-83.
[27]
HILGEN F J, LOURENS L J, VAN DAM J A, et al. The Neogene period[M]// GRADSTEINF M, OGGJ G. The geologic time scale. Amsterdam: Elsevier, 2012: 923-978.
[28]
FRIEDMAN G M, SANDERS J E. Principles of sedimentary deposits[M]. New York: John Wiley and Sons, 1978.
[29]
姜在兴. 沉积学[M]. 北京: 石油工业出版社, 2003.
[30]
VISHER G S. Grain size distributions and depositional processes[J]. SEPM Journal of Sedimentary Research, 1969, 39(3): 1074-1106.
[31]
PASSEGA R, BYRAMJEE R. Grain-size image of clastic deposits[J]. Sedimentology, 1969, 13(3): 233-252.
[32]
ZHANG C, XIAO G, GUO Z, et al. Evidence of late Early Miocene aridification intensification in the Xining Basin caused by the northeastern Tibetan Plateau uplift[J]. Global and Planetary Change, 2015, 128: 31-46.
[33]
ZHANG C, PATERSON G, HU B, et al. Elevation dependent weathering and padogenesis of the Emeishan Basalt in the northeastern Yunnan, China[C]// International Quaternary Conference Abstact. 2015: T02409.
[34]
HOKE G D, JING L Z, HREN M T, et al. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene[J]. Earth and Planetary Science Letters, 2014, 394: 270-278.
[35]
DECELLES P G, QUADE J, KAPP P, et al. High and dry in central Tibet during the Late Oligocene[J]. Earth and Planetary Science Letters, 2007, 253(3): 389-401.
[36]
LIU X D, SUN H, MIAO Y F, et al. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment[J]. Quaternary Science Reviews, 2015, 116: 1-14.
[37]
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[38]
QUADE J, CERLING T E, BOWMAN J R. Development of Asian monsoon revealed by marked ecological shift during the Latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6246): 163-166.
[39]
ZHANG P Z, MOLNAR P, DOWNS W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831): 891-897.
[40]
QUADE J, CATER J M L, OJHA T P, et al. Late Miocene environmental change in Nepal and the northern Indian subcontinent: stable isotopic evidence from paleosols[J]. Geological Society of America Bulletin, 1995, 107(12): 1381-1397.
[41]
BADGLEY C, BARRY J C, MORGAN M E, et al. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12145-12149.
[42]
HOORN C, OHJA T, QUADE J. Palynological evidence for vegetation development and climatic change in the Sub-Himalayan Zone (Neogene, Central Nepal)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 163(3): 133-161.
[43]
SANYAL P, BHATTACHARYA S K, KUMAR R, et al. Mio-Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 205(1): 23-41.
[44]
SANYAL P, BHATTACHARYA S K, PRASAD M. Chemical diagenesis of Siwalik sandstone: isotopic and mineralogical proxies from Surai Khola section, Nepal[J]. Sedimentary Geology, 2005, 180(1): 57-74.
[45]
CLIFT P D, HODGES K V, HESLOP D, et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity[J]. Nature Geoscience, 2008, 1(12): 875-880.

Comments

PDF(8219 KB)

Accesses

Citation

Detail

Sections
Recommended

/