Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing

Hongwei CHEN, Yao YANG, He HUANG, Hui ZHOU, Xiangxun PENG, Shasha YU, Weihou YU, Zhengzui LI, Zhaoguo WANG

PDF(5279 KB)
PDF(5279 KB)
Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2) : 423-434. DOI: 10.13745/j.esf.sf

Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing

Author information +
History +

Abstract

Lake Tongting area has a dynamic water environment with developed surface water networks, complex hydrogeological conditions and intensive human activities, which makes it difficult to gain in-depth understanding of groundwater storage and movement in the lake area. This study applies dynamic analysis of water levels and radon (222Rn) tracer method to carry out qualitative and quantitative analyses of surface water-groundwater interaction and exchange fluxes in Lake Tongting area in the dry season. The spatial distribution patterns of water levels and 222Rn concentrations in the lake area in the dry season (between 2018-2020) indicated that groundwater (GD) discharge to the lake occurred in the dry season, especially in eastern Lake Dongting. According to calculation using radon box model, the GD-borne 222Rn flux in the dry season was 455.09 Bq/(m2·d), or 60.07% of total 222Rn flux to the lake; the total groundwater discharge was 0.29×108 m3/d, and the average discharge rate was 56.27 mm/d. Groundwater discharge contributed to 7.04% of surface water in the dry season. Sensitivity analysis showed that sensitive variables in the model were wind speed, 222Rn concentration in groundwater/lake water and surface area. Improvements of sampling scheme and measurement accuracy of sensitive variables can improve reliability of calculation results. With clear physical significance and simple application protocol, radon (222Rn) tracer has certain application advantageous that it can be effectively used to quantify groundwater recharge, runoff and discharge in complex water environments. The research results provide better understanding of water balance in Lake Dongting and can serve as reference for water resource evaluation and management in the lake area.

Key words

surface water-groundwater interaction / water level dynamics / 222Rn isotope / dry season / Lake Dongting

Cite this article

Download Citations
Hongwei CHEN , Yao YANG , He HUANG , et al . Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing. Earth Science Frontiers. 2024, 31(2): 423-434 https://doi.org/10.13745/j.esf.sf

References

[1]
LI Y L, ZHANG Q, CAI Y J, et al. Hydrodynamic investigation of surface hydrological connectivity and its effects on the water quality of seasonal lakes: insights from a complex floodplain setting (Poyang Lake, China)[J]. Science of the Total Environment, 2019, 660: 245-259.
[2]
梁亚琳, 黎昔春, 郑颖. 洞庭湖径流变化特性研究[J]. 中国农村水利水电, 2015(5): 67-71.
[3]
詹泸成, 陈建生, 张时音. 洞庭湖湖区降水-地表水-地下水同位素特征[J]. 水科学进展, 2014, 25(3): 327-335.
[4]
孙晓梁, 杜尧, 邓娅敏, 等. 1996—2017年枯水期地下水排泄对洞庭湖水量均衡的贡献及其时间变异性[J]. 地球科学, 2021, 46(7): 2555-2564.
[5]
曹玲玲, 王宗礼, 刘耀炜. 氡迁移机理研究进展概述[J]. 地震研究, 2005, 28(3): 302-306.
[6]
CORBETT D R, BURNETT W C, CABLE P H, et al. A multiple approach to the determination of radon fluxes from sediments[J]. Journal of Radioanalytical and Nuclear Chemistry, 1998, 236(1): 247-253.
[7]
郭占荣, 李开培, 袁晓婕, 等. 用氡-222评价五缘湾的地下水输入[J]. 水科学进展, 2012, 23(2): 263-270.
[8]
孙小龙, 王广才, 邵志刚, 等. 海原断裂带土壤气与地下水地球化学特征研究[J]. 地学前缘, 2016, 23(3): 140-150.
[9]
戴波, 赵启光, 张敏, 等. 郯庐断裂带宿迁段合欢路土壤氡分布特征与迁移特征的数值模拟[J]. 震灾防御技术, 2021, 16(1): 220-228.
[10]
王雨山, 程旭学, 张梦南, 等. 基于222Rn的马莲河下游地下水补给河水空间差异特征研究[J]. 水文地质工程地质, 2018, 45(5): 34-40.
[11]
GLASER C, SCHWIENTEK M, JUNGINGER T, et al. Comparison of environmental tracers including organic micropollutants as groundwater exfiltration indicators into a small river of a karstic catchment[J]. Hydrological Processes, 2020, 34(24): 4712-4726.
[12]
STRYDOM T, NEL J M, NEL M, et al. The use of Radon (222Rn) isotopes to detect groundwater discharge in streams draining Table Mountain Group (TMG) aquifers[J]. Water SA, 2021, 47(2): 194-199.
[13]
何炳毅, 杨英魁, 孔凡翠, 等. 青海湖布哈河流域枯水期氢氧同位素和氡同位素分布特征及其意义[J]. 地质学报, 2022, 96: 1-15.
[14]
郭巧娜, 赵岳, 周志芳, 等. 人类活动影响下的龙口海岸带海底地下水排泄通量研究[J]. 地学前缘, 2022, 29(4): 468-479.
[15]
廖福, 罗新, 谢月清, 等. 氡(222Rn)在地下水-地表水相互作用中的应用研究进展[J]. 地学前缘, 2022, 29(3): 76-87.
[16]
危润初, 唐仕明, 吴长山, 等. 洞庭湖区浅层地下水氧化还原分带规律[J]. 中国环境科学, 2020, 40(4): 1715-1722.
[17]
黄艳雯, 杜尧, 徐宇, 等. 洞庭湖平原西部地区浅层承压水中铵氮的来源与富集机理[J]. 地质科技通报, 2020, 39(6): 165-174.
[18]
LIAO F, WANG G C, SHI Z M, et al. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: approaches using stable isotopes (δD and δ18O) and radon[J]. Hydrogeology Journal, 2018, 26(5): 1625-1638.
[19]
LUO X, JIAO J J, WANG X S, et al. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: implication of water balance in the Badain Jaran Desert, China[J]. Journal of Hydrology, 2016, 534: 87-103.
[20]
COLUCCIO K M, SANTOS I R, JEFFREY L C, et al. Groundwater discharge rates and uncertainties in a coastal lagoon using a radon mass balance[J]. Journal of Hydrology, 2021, 598: 126436.
[21]
SCHULZ H D. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase[M]// SCHULZH D, ZABELM. Marine geochemistry. Berlin, Heidelberg:Springer, 2006: 73-124.
[22]
BURNETT W C, DULAIOVA H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements[J]. Journal of Environmental Radioactivity, 2003, 69(1/2): 21-35.
[23]
MACINTYRE S, WANNINKHOF R, CHANTON J P. Trace gas exchange across the air-water interface in freshwater and coastal marine environments[M]// MASATSONP A, HARRISSR C. Biogenic trace gases:measuring emissions from soil and water. Oxford: Blackwell Science Ltd, 1995: 52-77.
[24]
DIMOVA N T, BURNETT W C, CHANTON J P, et al. Application of radon-222 to investigate groundwater discharge into small shallow lakes[J]. Journal of Hydrology, 2013, 486: 112-122.
[25]
田雨, 雷晓辉, 蒋云钟, 等. 水文模型参数敏感性分析方法研究评述[J]. 水文, 2010, 30(4): 9-12, 62.
[26]
李燕, 李兆富, 席庆. HSPF径流模拟参数敏感性分析与模型适用性研究[J]. 环境科学, 2013, 34(6): 2139-2145.
[27]
连生土, 肖江. 洞庭湖浅层地下水环境背景值的研究[J]. 福建建筑, 2010(10): 61-63.

Footnotes

Comments

PDF(5279 KB)

Accesses

Citation

Detail

Sections
Recommended

/